【題目】甲,乙,丙,丁四人參加完某項(xiàng)比賽,當(dāng)問到四人誰得第一時(shí),回答如下:甲:“我得第一名”;乙:“丁沒得第一名”;丙:“乙沒得第一名”;丁:“我得第一名”.已知他們四人中只有一個(gè)說真話,且只有一人得第一.根據(jù)以上信息可以判斷得第一名的人是 ( )

A. B. C. D.

【答案】B

【解析】分析:分別假設(shè)甲、乙、、丁得第一名,逐一分析判斷即可.

詳解:若甲得第一名,則甲、丙說了真話,丁說了假話,不符合題意;

若乙得第一名,則乙說了真話,甲、、丁說了假話,符合題意;

若丙得第一名,則乙、丙說了真話,甲丁說了假話,不符合題意;

若丁得第一名,則丙、丁說了真話,甲、乙說了假話,不符合題意

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,a,5},B={2,a2+1}.若AB有且只有一個(gè)元素,則實(shí)數(shù)a的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一批乒乓球產(chǎn)品中任取一個(gè),如果其質(zhì)量小于4.8克的概率是0.3,質(zhì)量不小于4.85克的概率是0.32,則質(zhì)量在[4.8,4.85)克范圍內(nèi)的概率是(  )

A. 0.62 B. 0.38 C. 0.7 D. 0.68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之?dāng)?shù)五十”的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理.?dāng)?shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和,是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題.其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,…則此數(shù)列第20項(xiàng)為

A. 180 B. 200 C. 128 D. 162

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在(-∞,+∞)上的奇函數(shù),若對于任意的實(shí)數(shù)x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2 015)+f(2 016)的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線,過點(diǎn)的直線的參數(shù)方程為為參數(shù)),分別交于.

)寫出的平面直角坐標(biāo)系方程和的普通方程;

)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從一箱產(chǎn)品中隨機(jī)地抽取一件,設(shè)事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.則事件抽到的是二等品或三等品的概率為(  )

A. 0.7 B. 0.65

C. 0.35 D. 0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要從容量為102的總體中用系統(tǒng)抽樣法隨機(jī)抽取一個(gè)容量為9的樣本,則下列敘述正確的是(  )

A. 將總體分11,每組間隔為9

B. 將總體分9,每組間隔為11

C. 從總體中剔除3個(gè)個(gè)體后分11,每組間隔為9

D. 從總體中剔除3個(gè)個(gè)體后分9,每組間隔為11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)等腰三角形繞著底邊上的高所在的直線旋轉(zhuǎn)180度所形成的幾何體的名稱是( )

A. 圓柱 B. 圓錐 C. 圓臺 D. 圓柱的一部分

查看答案和解析>>

同步練習(xí)冊答案