【題目】如圖,已知扇形的圓心角∠AOB=,半徑為,若點(diǎn)C是上的一動(dòng)點(diǎn)(不與點(diǎn)A,B重合).
(1)若弦,求的長(zhǎng);
(2)求四邊形OACB面積的最大值.
【答案】(1) (2)
【解析】
(1)在三角形中,利用余弦定理求得的余弦值,進(jìn)而求得的大小,再利用弧長(zhǎng)公式計(jì)算出的長(zhǎng).
(2)設(shè),利用三角形和三角形的面積表示出四邊形的面積,利用三角恒等變換進(jìn)行化簡(jiǎn),結(jié)合三角函數(shù)最值的求法,求得四邊形的面積的最大值.
(1)在△OBC中,BC=4(-1),OB=OC=,
所以由余弦定理得cos∠BOC=,
所以∠BOC=,
于是的長(zhǎng)為×=.
(2)設(shè)∠AOC=θ,θ∈,則∠BOC=-θ,
S四邊形OACB=S△AOC+S△BOC=××sin θ××·sin=24sin θ+cos θ=,由于θ∈,所以,當(dāng)θ=時(shí),四邊形OACB的面積取得最大值16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若對(duì)任意的且,都有,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種設(shè)備隨著使用年限的增加,每年的維護(hù)費(fèi)相應(yīng)增加.現(xiàn)對(duì)一批該設(shè)備進(jìn)行調(diào)查,得到這批設(shè)備自購(gòu)入使用之日起,前5年平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用大致如表:
年份(年) | |||||
維護(hù)費(fèi)(萬(wàn)元) |
已知.
(I)求表格中的值;
(II)從這年中隨機(jī)抽取兩年,求平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用至少有年多于萬(wàn)元的概率;
(Ⅲ)求關(guān)于的線性回歸方程;并據(jù)此預(yù)測(cè)第幾年開(kāi)始平均每臺(tái)設(shè)備每年的維護(hù)費(fèi)用超過(guò)萬(wàn)元.
參考公式:用最小二乘法求線性回歸方程的系數(shù)公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是半圓的直徑,,為圓周上一點(diǎn),平面,,,,.
(1)求證:平面平面;
(2)在線段上是否存在點(diǎn),且使得平面?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下幾個(gè)命題中:
①線性回歸直線方程恒過(guò)樣本中心;
②用相關(guān)指數(shù)可以刻畫(huà)回歸的效果,值越小說(shuō)明模型的擬合效果越好;
③隨機(jī)誤差是引起預(yù)報(bào)值和真實(shí)值之間存在誤差的原因之一,其大小取決于隨機(jī)誤差的方差;
④在含有一個(gè)解釋變量的線性模型中,相關(guān)指數(shù)等于相關(guān)系數(shù)的平方.
其中真命題的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線:的右焦點(diǎn)到漸近線的距離為4,且在雙曲線上到的距離為2的點(diǎn)有且僅有1個(gè),則這個(gè)點(diǎn)到雙曲線的左焦點(diǎn)的距離為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱底面,且, 是棱的中點(diǎn),點(diǎn)在側(cè)棱上運(yùn)動(dòng).
(1)當(dāng)是棱的中點(diǎn)時(shí),求證: 平面;
(2)當(dāng)直線與平面所成的角的正切值為時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年5月21日5點(diǎn)28分,在我國(guó)西昌衛(wèi)星發(fā)射中心,由中國(guó)航天科技集團(tuán)有限公司抓總研制的嫦娥四號(hào)中繼星“鵲橋”搭乘長(zhǎng)征四號(hào)丙運(yùn)載火箭升空,這標(biāo)志著我國(guó)在月球探測(cè)領(lǐng)域取得新的突破.早在1671年,兩位法國(guó)天文學(xué)家就已經(jīng)成功測(cè)量出了地球與月球之間的距離,接下來(lái),讓我們重走這兩位科學(xué)家的測(cè)量過(guò)程.如圖,設(shè)O為地球球心,C為月球表面上一點(diǎn),A,B為地球上位于同一子午線(經(jīng)線)上的兩點(diǎn),地球半徑記為R.
步驟一:經(jīng)測(cè)量,A,B兩點(diǎn)的緯度分別為北緯和南緯,即,可求得;
步驟二:經(jīng)測(cè)量計(jì)算,,,計(jì)算;
步驟三:利用以上測(cè)量及計(jì)算結(jié)果,計(jì)算.
請(qǐng)你用解三角形的相關(guān)知識(shí),求出步驟二三中的及的值(結(jié)果均用,,R表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2-2x+1.
(1)試討論函數(shù)f(x)的單調(diào)性;
(2)若≤a≤1,且f(x)在[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a),求g(a)的表達(dá)式;
(3)在(2)的條件下,求證:g(a)≥.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com