【題目】隨著科技發(fā)展,手機成了人們?nèi)粘I钪斜夭豢缮俚耐ㄐ殴ぞ,現(xiàn)在的中學生幾乎都擁有了屬于自己的手機了.為了調(diào)查某地區(qū)高中生一周使用手機的頻率,某機構隨機調(diào)查了該地區(qū)100名高中生某一周使用手機的時間(單位:小時),所取樣本數(shù)據(jù)分組區(qū)間為、、、、、、,由此得到如圖所示的頻率分布直方圖.
(1)求的值并估計該地區(qū)高中生一周使用手機時間的平均值;
(2)從使用手機時間在、、、的四組學生中,用分層抽樣方法抽取13人,則每層各應抽取多少人?
【答案】(1) , ;(2)6,4,2,1.
【解析】試題分析:(1)根據(jù)頻率分布直方圖的條形面積為該組的頻率以及頻率和為1,列出方程求出a的值,再利用平均值公式計算出平均值;(2)調(diào)查總?cè)藬?shù)為100人,根據(jù)各組的頻率分別計算各組的頻數(shù),分層抽樣就是按比例抽樣,根據(jù)各組所占的比例,求出各組抽取的人數(shù).
試題解析:
(1)由于小矩形的面積之和為1,則,由此可得.該地區(qū)高中生一周使用手機時間的平均值為.
(2)使用手機時間在的學生有人,使用手機時間在的學生有人,使用手機時間在的學生有人,使用手機時間在的學生有人,故用分層抽樣法從使用手機時間在, , , 的四組學生中抽樣,抽取人數(shù)分別為, , , .
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,設直線的極坐標方程為.
(1)求曲線和直線的普通方程;
(2)設為曲線上任意一點,求點到直線的距離的最值.
【答案】(1), ;(2)最大值為,最小值為
【解析】試題分析:(1)根據(jù)參數(shù)方程和極坐標化普通方程化法即易得結(jié)論的普通方程為;直線的普通方程為.(2)求點到線距離問題可借助參數(shù)方程,利用三角函數(shù)最值法求解即可故設, .即可得出最值
解析:(1)根據(jù)題意,由,得, ,
由,得,
故的普通方程為;
由及, 得,
故直線的普通方程為.
(2)由于為曲線上任意一點,設,
由點到直線的距離公式得,點到直線的距離為
.
∵ ,
∴ ,即 ,
故點到直線的距離的最大值為,最小值為.
點睛:首先要熟悉參數(shù)方程和極坐標方程化普通方程的方法,第一問基本屬于送分題所以務必抓住,對于第二問可以總結(jié)為一類題型,借助參數(shù)方程設點的方便轉(zhuǎn)化為三角函數(shù)最值問題求解
【題型】解答題
【結(jié)束】
23
【題目】已知函數(shù),.
(1)解關于的不等式;
(2)若函數(shù)的圖象恒在函數(shù)圖象的上方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線的焦點,關于軸的對稱點為,曲線上任意一點滿足;直線和直線的斜率之積為.
(1)求曲線的方程;
(2)過且斜率為正數(shù)的直線與拋物線交于兩點,其中點在軸上方,與曲線交于點,若的面積為的面積為,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知角始邊與軸的非負半軸重合,與圓相交于點,終邊與圓相交于點,點在軸上的射影為, 的面積為,函數(shù)的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()在同一半周期內(nèi)的圖象過點, , ,其中為坐標原點, 為函數(shù)圖象的最高點, 為函數(shù)的圖象與軸的正半軸的交點, 為等腰直角三角形.
(1)求的值;
(2)將繞原點按逆時針方向旋轉(zhuǎn)角,得到,若點恰好落在曲線()上(如圖所示),試判斷點是否也落在曲線()上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設直線l的方程為(a+1)x+y-2-a=0(a∈R).
(1)若直線l在兩坐標軸上的截距相等,則直線l的方程為__________________________;
(2)若a>-1,直線l與x、y軸分別交于M、N兩點,O為坐標原點,則△OMN的面積取最小值時,直線l對應的方程為________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C1的參數(shù)方程為 (φ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓C2的極坐標方程為.
(1)將圓C1的參數(shù)方程化為普通方程,將圓C2的極坐標方程化為直角坐標方程;
(2)圓C1、C2是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·遼寧五校聯(lián)考)某車間加工零件的數(shù)量x與加工時間y的統(tǒng)計數(shù)據(jù)如表:
零件數(shù)x(個) | 10 | 20 | 30 |
加工時間y(分鐘) | 21 | 30 | 39 |
現(xiàn)已求得上表數(shù)據(jù)的線性回歸方程=+中的值為0.9,則據(jù)此回歸模型可以預測,加工100個零件所需要的加工時間約為( )
A. 84分鐘 B. 94分鐘
C. 102分鐘 D. 112分鐘
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com