已知l1和l2是平面內(nèi)互相垂直的兩條直線,它們的交點(diǎn)為A,異于點(diǎn)A的兩動點(diǎn)B、C分別在l1、l2上,且BC=3,則過A、B、C三點(diǎn)的動圓所形成的圖形面積為( 。
A.6πB.9πC.
2
D.
9
4
π
由題意,l1和l2是平面內(nèi)互相垂直的兩條直線,它們的交點(diǎn)為A,BC=3,
∴過A、B、C三點(diǎn)的動圓的圓心軌跡是以A為圓心,
3
2
為半徑的圓,
∵過A、B、C三點(diǎn)的動圓的圓的半徑為
3
2
,
∴過A、B、C三點(diǎn)的動圓上的點(diǎn)到點(diǎn)A的距離為3,
∴過A、B、C三點(diǎn)的動圓所形成的圖形是以A為圓心,3為半徑的圓,
∴過A、B、C三點(diǎn)的動圓所形成的圖形面積為9π.
故選:B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的焦點(diǎn)在軸上, 分別是橢圓的左、右焦點(diǎn),點(diǎn)是橢圓在第一象限內(nèi)的點(diǎn),直線軸于點(diǎn),
(1)當(dāng)時(shí),
(1)若橢圓的離心率為,求橢圓的方程;
(2)當(dāng)點(diǎn)P在直線上時(shí),求直線的夾角;
(2) 當(dāng)時(shí),若總有,猜想:當(dāng)變化時(shí),點(diǎn)是否在某定直線上,若是寫出該直線方程(不必求解過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動點(diǎn)P(x,y)與兩定點(diǎn)M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(I)求動點(diǎn)P的軌跡C的方程;
(II)試根據(jù)λ的取值情況討論軌跡C的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)O(0,0),A(1,-2),動點(diǎn)P滿足|PA|=3|PO|,則點(diǎn)P的軌跡方程是(  )
A.8x2+8y2+2x-4y-5=0B.8x2+8y2-2x-4y-5=0
C.8x2+8y2-2x+4y-5=0D.8x2+8y2+2x+4y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知定點(diǎn)A(1,0),定圓C:(x+1)2+y2=8,M為圓C上的一個動點(diǎn),點(diǎn)P在線段AM上,點(diǎn)N在線段CM上,且滿足
AM
=2
AP
NP
AM
=0
,則點(diǎn)N的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1、F2是定點(diǎn),|F1F2|=6,動點(diǎn)M滿足|MF1|+|MF2|=6,則點(diǎn)M的軌跡是( 。
A.橢圓B.直線C.線段D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一動圓和直線l:x=-
1
2
相切,并且經(jīng)過點(diǎn)F(
1
2
,0)
,
(Ⅰ)求動圓的圓心θ的軌跡C的方程;
(Ⅱ)若過點(diǎn)P(2,0)且斜率為k的直線交曲線C于M(x1,y1),N(x2,y2)兩點(diǎn).
求證:OM⊥ON.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

矩形ABCD的四個頂點(diǎn)的坐標(biāo)分別為A(-2,1),B(2,1),C(2,-1),D(-2,-1),過原點(diǎn)且互相垂直的兩條直線分別與矩形的邊相交于E、F、G、H四點(diǎn),則四邊形EGFH的面積的最小值為______,最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)A(-
3
,0),B(
3
,0)
,動點(diǎn)P(x,y)滿足:||AP|-|BP||=2;
(1)求動點(diǎn)P的軌跡方程;
(2)直線mx-y+1=0與動點(diǎn)P的軌跡只有一個交點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案