A. | (-∞,e2) | B. | (-∞,e2-4) | C. | (e2,+∞) | D. | (e2-4,+∞) |
分析 任取三個實數(shù)a,b,c,均存在以f(a),f(b),f(c)為邊長的三角形,等價于f(a)+f(b)>f(c)恒成立,從而2f(x)min>f(x)max且f(x)max>0,由此能求出實數(shù)h的取值范圍.
解答 解:任取三個實數(shù)a,b,c,均存在以f(a),f(b),f(c)為邊長的三角形,
等價于f(a)+f(b)>f(c)恒成立,
∴2f(x)min>f(x)max且f(x)max>0,
令${f}^{'}(x)=-\frac{1}{x}+1=0$,解得x=1,
當$\frac{1}{e}<x<1$時,f′(x)<0,
當1<x<e時,f′(x)>0,
∴當x=1時,f(x)min=f(1)=1+h,
f(x)max=max{f($\frac{1}{e}$),f(e2)}=max{$\frac{1}{e}+1+h$,e2-2+h},
從而得到$\left\{\begin{array}{l}{2(1+h)>{e}^{2}-2+h}\\{1+h>0}\end{array}\right.$,
解得h>e2-4.
∴實數(shù)h的取值范圍是(e2-4,+∞).
故選:D.
點評 本題考查導數(shù)的應用,是中檔題,解題時要認真審題,注意等價轉化思想的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {3,4} | B. | {1,2,3} | C. | {1,2} | D. | {1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 28 | B. | 32 | C. | 56 | D. | 70 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com