【題目】已知直線l過點(diǎn)P(2,),且傾斜角α,曲線C (θ為參數(shù)),直線l與曲線C相交于不同的兩點(diǎn)AB.

(1)寫出直線的參數(shù)方程,及曲線C的普通方程;

(2)求線段AB的中點(diǎn)Q的坐標(biāo),及的值.

【答案】(1)見解析(2)

【解析】

(1)利用經(jīng)過定點(diǎn),傾斜角為,寫出直線的參數(shù)方程,利用平方法消去參數(shù)得到圓錐曲線的標(biāo)準(zhǔn)方程;(2)把直線旳參數(shù)方程代入圓錐曲線的標(biāo)準(zhǔn)方程,利用參數(shù)的幾何意義,結(jié)合韋達(dá)定理,可求得的值.

(1)直線l的參數(shù)方程為 (t為參數(shù)),

平方相交可得,曲線C 的普通方程為y2=1;

(2)把直線l的參數(shù)方程代入曲線C的普通方程,13t2+56t+48=0,

設(shè)直線l上的點(diǎn)A,B對(duì)應(yīng)參數(shù)分別為t1t2,

所以t1t2,

又設(shè)AB的中點(diǎn)Q對(duì)應(yīng)參數(shù)為t0,

t0=-,所以點(diǎn)M的坐標(biāo)為,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點(diǎn)為,,離心率.

(1)求此橢圓的方程;

2)設(shè)直線,若與此橢圓相交于,兩點(diǎn),且等于橢圓的短軸長(zhǎng),求的值;

3)以此橢圓的上頂點(diǎn)為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形,這樣的直角三角形是否存在?若存在,請(qǐng)說明有幾個(gè);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=xln(ax+1)(a≠0).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若a>0且滿足:對(duì)x1 , x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤ln3﹣ln2,試比較ea1 的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一盒中裝有9張各寫有一個(gè)數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.

1)求所取3張卡片上的數(shù)字完全相同的概率;

2表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望.

(注:若三個(gè)數(shù)滿足,則稱為這三個(gè)數(shù)的中位數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|﹣x﹣2. (Ⅰ)當(dāng)a=1時(shí),求不等式f(x)>0的解集;
(Ⅱ)設(shè)a>﹣1,且存在x0∈[﹣a,1),使得f(x0)≤0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|xex+1|,關(guān)于x的方程f2(x)+2sinαf(x)+cosα=0有四個(gè)不等實(shí)根,sinα﹣cosα≥λ恒成立,則實(shí)數(shù)λ的最大值為(
A.﹣
B.﹣
C.﹣
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校矩形的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為1:3,且成績(jī)分布在范圍內(nèi),規(guī)定分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng),按文理科用分層抽樣的放發(fā)抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖.

(Ⅰ)填寫下面的列聯(lián)表,能否有超過95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”;

(Ⅱ)將上述調(diào)查所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取3名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附表及公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)滿足,,且點(diǎn)的坐標(biāo)為.

(1)求過點(diǎn)的直線的方程;

(2)試用數(shù)學(xué)歸納法證明:對(duì)于,點(diǎn)都在(1)中的直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù):f(x)=﹣x3﹣3x2+(1+a)x+b(a<0,b∈R).
(1)令h(x)=f(x﹣1)﹣b+a+3,判斷h(x)的奇偶性,并討論h(x)的單調(diào)性;
(2)若g(x)=|f(x)|,設(shè)M(a,b)為g(x)在[﹣2,0]的最大值,求M(a,b)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案