已知?jiǎng)狱c(diǎn)P到定點(diǎn)F(
2
,0)
的距離與點(diǎn)P到定直線l:x=2
2
的距離之比為
2
2

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)M、N是直線l上的兩個(gè)點(diǎn),點(diǎn)E與點(diǎn)F關(guān)于原點(diǎn)O對稱,若
EM
FN
=0
,求|MN|的最小值.
(1)設(shè)點(diǎn)P(x,y),
依題意,有
(x-
2
)
2
+y2
|x-2
2
|
=
2
2

整理,得
x2
4
+
y2
2
=1

所以動(dòng)點(diǎn)P的軌跡C的方程為
x2
4
+
y2
2
=1

(2)∵點(diǎn)E與點(diǎn)F關(guān)于原點(diǎn)O對稱,
∴點(diǎn)E的坐標(biāo)為(-
2
,0)

∵M(jìn)、N是直線l上的兩個(gè)點(diǎn),
∴可設(shè)M(2
2
y1)
,N(2
2
,y2)
(不妨設(shè)y1>y2).
EM
FN
=0
,
(3
2
,y1)•(
2
,y2)=0

即6+y1y2=0.即y2=-
6
y1

由于y1>y2,則y1>0,y2<0.
|MN|=y1-y2=y1+
6
y1
≥2
y1
6
y1
=2
6

當(dāng)且僅當(dāng)y1=
6
,y2=-
6
時(shí),等號成立.
故|MN|的最小值為2
6
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P到定點(diǎn)F(
2
,0)
的距離與點(diǎn)P到定直線l:x=2
2
的距離之比為
2
2

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)M、N是直線l上的兩個(gè)點(diǎn),點(diǎn)E與點(diǎn)F關(guān)于原點(diǎn)O對稱,若
EM
FN
=0
,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P到定點(diǎn)F(0,-2)的距離和它到定直線l:y=-6的距離之比為
13
,求動(dòng)點(diǎn)P的軌跡方程,并指出是什么曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P到定點(diǎn)F(0,1)的距離等于點(diǎn)P到定直線l:y=-1的距離.點(diǎn)Q(0,-1).
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過點(diǎn)Q作軌跡C的切線,若切點(diǎn)A在第一象限,求切線m的方程;
(Ⅲ)過N(0,2)作傾斜角為60°的一條直線與C交于A、B兩點(diǎn),求AB弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水市高三第六次檢測數(shù)學(xué)文卷 題型:解答題

(12分)已知?jiǎng)狱c(diǎn)P到定點(diǎn)F (, 0 ) 的距離與點(diǎn) P 到定直線 l:x=2 的距離之比為。

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)設(shè)M、N是直線l上的兩個(gè)點(diǎn),點(diǎn)E是點(diǎn)F關(guān)于原點(diǎn)的對稱點(diǎn),若·=0,

    求 | MN | 的最小值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省天水市高三第六次檢測數(shù)學(xué)文卷 題型:解答題

(12分)已知?jiǎng)狱c(diǎn)P到定點(diǎn)F (, 0 ) 的距離與點(diǎn) P 到定直線 l:x=2 的距離之比為。

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)設(shè)M、N是直線l上的兩個(gè)點(diǎn),點(diǎn)E是點(diǎn)F關(guān)于原點(diǎn)的對稱點(diǎn),若·=0,

    求 | MN | 的最小值。

 

查看答案和解析>>

同步練習(xí)冊答案