【題目】已知函數(shù).
(1)當時,求的單調區(qū)間;
(2)當時,關于的不等式在上恒成立,求的取值范圍.
【答案】(1)的減區(qū)間為,增區(qū)間為.(2)
【解析】
(1)對函數(shù),進行求導,判斷函數(shù)的單調性,進而求出的單調區(qū)間。
(2),,即,構造設,,則只需在恒成立即可,對進行求導,分類討論,根據(jù)的單調性,求出滿足條件的的取值范圍。
解:(1)當時,,
,當時,,是減函數(shù),
,,是增函數(shù),
所以,的減區(qū)間為,增區(qū)間為.
(1)當時,,,即.
設,,則只需在恒成立即可.
易知,,因為,所以.
①當時,,此時在上單調遞減,
所以,與題設矛盾;
②當時,由得,當時,,
當時,,此時在上單調遞減,所以,當時,,與題設矛盾;
③當時,,故在上單調遞增,所以恒成立.
綜上,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓,拋物線的頂點為,準線的方程為,為拋物線上的動點,過點作圓的兩條切線與軸交于.
(Ⅰ)求拋物線的方程;
(Ⅱ)若,求△面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C的頂點為坐標原點O,對稱軸為x軸,其準線過點.
(1)求拋物線C的方程;
(2)過拋物線焦點F作直線l,使得拋物線C上恰有三個點到直線l的距離都為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定橢圓.稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為,其短軸上的一個端點到F的距離為.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著社會的發(fā)展,終身學習成為必要,工人知識要更新,學習培訓必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為類工人),從該工廠的工人中共抽查了100名工人,調查他們的生產能力(此處生產能力指一天加工的零件數(shù))得到類工人生產能力的莖葉圖(左圖),類工人生產能力的頻率分布直方圖(右圖).
(1)問類、類工人各抽查了多少工人,并求出直方圖中的;
(2)求類工人生產能力的中位數(shù),并估計類工人生產能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)若規(guī)定生產能力在內為能力優(yōu)秀,由以上統(tǒng)計數(shù)據(jù)在答題卡上完成下面的列聯(lián)表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產能力與培訓時間長短有關.能力與培訓時間列聯(lián)表
短期培訓 | 長期培訓 | 合計 | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計 |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程和曲線的直角坐標方程;
(2)設曲線和交于,兩點,點,若,,成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.若為真命題,則,均為假命題;
B.命題“若,則”的逆否命題為真命題;
C.等比數(shù)列的前項和為,若“”則“”的否命題為真命題;
D.“平面向量與的夾角為鈍角”的充要條件是“”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為自然對數(shù)的底數(shù)).
(1)求函數(shù)的值域;
(2)若不等式對任意恒成立,求實數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線與恰有一個公共點.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)已知曲線上兩點,滿足,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com