【題目】小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點數(shù)記為x;小李后擲一枚骰子,向上的點數(shù)記為y,
(1)在直角坐標系xOy中,以(x,y)為坐標的點共有幾個?試求點(x,y)落在直線x+y=7上的概率;
(2)規(guī)定:若x+y≥10,則小王贏;若x+y≤4,則小李贏,其他情況不分輸贏.試問這個游戲規(guī)則公平嗎?請說明理由.
【答案】(1)36個,概率為;(2)公平.
【解析】試題分析:(1)根據(jù)題意判斷為古典概型,所有的基本事件總數(shù)為36個,其中點落在直線上包含6種情況,故概率為P=;(2)由題意,判斷x+y≥10和x+y≤4的概率是否相等即可,根據(jù)古典概型概率公式求解即可。
試題解析:
(1)因都可取1,2,3,4,5,6,故以為坐標的點共有6×6=36個.
記“點落在直線上”為事件A,
則事件A包含的點有(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),共6個,
由古典概型概率公式可得事件A的概率為P(A)= .
(2)記“x+y≥10”為事件B,“x+y≤4”為事件C,用數(shù)對(x,y)表示x,y的取值.
則事件B包含的基本事件為(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6個數(shù)對;
事件C包含的基本事件為(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6個數(shù)對.
由(1)知基本事件總數(shù)為36個,
所以P(B)= ,P(C)= ,
所以小王、小李獲勝的可能性相等,因此游戲規(guī)則是公平的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線y=Asin(ωx+φ)(A>0,ω>0)上的一個最高點的坐標為(,),由此點到相鄰最低點間的曲線與x軸交于點(π,0),φ∈(﹣,).
(1)求這條曲線的函數(shù)解析式;
(2)寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究性學(xué)習(xí)中,收集到某制藥廠今年前5個月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如下表所示:
月份x | 1 | 2 | 3 | 4 | 5 |
y(萬盒) | 4 | 4 | 5 | 6 | 6 |
(1)該同學(xué)為了求出關(guān)于的線性回歸方程 ,根據(jù)表中數(shù)據(jù)已經(jīng)正確計算出=0.6,試求出的值,并估計該廠6月份生產(chǎn)的甲膠囊產(chǎn)量數(shù);
(2)若某藥店現(xiàn)有該制藥廠今年二月份生產(chǎn)的甲膠囊4盒和三月份生產(chǎn)的甲膠囊5盒,小紅同學(xué)從中隨機購買了3盒甲膠囊,后經(jīng)了解發(fā)現(xiàn)該制藥廠今年二月份生產(chǎn)的所有甲膠囊均存在質(zhì)量問題,記小紅同學(xué)所購買的3盒甲膠囊中存在質(zhì)量問題的盒數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的離心率為,直線: 與以原點為圓心、橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)過橢圓的左頂點作直線,與圓相交于兩點, ,若是鈍角三角形,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果一個幾何體的主視圖與左視圖是全等的長方形,邊長分別是,如圖所示,俯視圖是一個邊長為的正方形.
(1)求該幾何體的表面積;
(2)求該幾何體的外接球的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(Ⅰ)當(dāng)a=2,求函數(shù)f(x)的圖象在點(1,f(1) )處的切線方程;
(Ⅱ)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)區(qū)間。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com