【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)若有兩個極值點(diǎn),,且,證明:.
【答案】(1)見解析.(2)見解析.
【解析】分析:(1)先求導(dǎo)數(shù),再根據(jù)二次方程 =0根得情況分類討論:當(dāng)時,.∴在上單調(diào)遞減. 當(dāng)時,根據(jù)兩根大小再分類討論對應(yīng)單調(diào)區(qū)間, (2)先化簡不等式消m得,再利用導(dǎo)數(shù)研究,單調(diào)性,得其最小值大于-1,即證得結(jié)果.
詳解:(1)由,得
,.
設(shè),.
當(dāng)時,即時,,.
∴在上單調(diào)遞減.
當(dāng)時,即時,
令,得,,.
當(dāng)時,,
在上,,在上,,
∴在上單調(diào)遞增,在上單調(diào)遞減.
綜上,當(dāng)時,在上單調(diào)遞減,
當(dāng)時,在,上單調(diào)遞減,在上單調(diào)遞增,
當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.
(2)∵有兩個極值點(diǎn),,且,
∴由(1)知有兩個不同的零點(diǎn),,
,,且,此時,,
要證明,只要證明.
∵,∴只要證明成立.
∵,∴.
設(shè),,
則,
當(dāng)時,,
∴在上單調(diào)遞增,
∴,即,
∴有兩個極值點(diǎn),,且時,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.
(I)求張同學(xué)至少取到1道乙類題的概率;
(II)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨(dú)立.用表示張同學(xué)答對題的個數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列五個正方體圖形中,是正方體的一條對角線,點(diǎn)M,N,P分別為其所在棱的中點(diǎn),求能得出⊥面MNP的圖形的序號(寫出所有符合要求的圖形序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x∈R,|x|<1時,有如下表達(dá)式:1+x+x2+…+xn+…=
兩邊同時積分得: dx+ xdx+ x2dx+…+ xndx+…= dx
從而得到如下等式:1× + ×( )2+ ×( )3+…+ ×( )n+1+…=ln2
請根據(jù)以上材料所蘊(yùn)含的數(shù)學(xué)思想方法,計算:
× + ×( )2+ ×( )3+…+ ×( )n+1= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測試中,卷面滿分為100分,考生得分為整數(shù),規(guī)定60分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對考生復(fù)習(xí)效果的影響,對午休和不午休的考生進(jìn)行了測試成績的統(tǒng)計,數(shù)據(jù)如下表:
(1)根據(jù)上述表格完成下列列聯(lián)表:
(2)判斷“能否在犯錯誤的概率不超過0.010的前提下認(rèn)為成績及格與午休有關(guān)”?
(參考公式:,其中.)
0.010 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的否定,并判斷其真假:
(1)任何有理數(shù)都是實(shí)數(shù);
(2)存在一個實(shí)數(shù),能使成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費(fèi),發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表(并以此估計賠付概率).
(Ⅰ)根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費(fèi)的20%,試分別確定各類工種每張保單保費(fèi)的上限;
(Ⅱ)某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準(zhǔn)備為全體職工每人購買一份此種保險,并以(Ⅰ)中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是矩形,平面,AB 1,AP AD 2.
(1)求直線與平面所成角的正弦值;
(2)若點(diǎn)M,N分別在AB,PC上,且平面,試確定點(diǎn)M,N的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為保障高考的公平性,高考時每個考點(diǎn)都要安裝手機(jī)屏蔽儀,要求在考點(diǎn)周圍1 km內(nèi)不能收到手機(jī)信號,檢查員抽查某市一考點(diǎn),在考點(diǎn)正西約 km/h的的B處有一條北偏東60°方向的公路,在此處檢查員用手機(jī)接通電話,以每小時12千米的速度沿公路行駛,最多需要多少時間,檢查員開始收不到信號,并至少持續(xù)多長時間該考點(diǎn)才算合格?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com