定義在非零實數(shù)集上的奇函數(shù)f(x)在(-∞,0)上是減函數(shù),且f(-3)=0.
(1)求f(3)的值;
(2)求滿足f(x)>0的x的集合.
分析:(1)根據(jù)函數(shù)奇偶性可得f(-x)=-f(x),從而f(3)=-f(-3)即可求出;
(2)先根據(jù)奇函數(shù)的性質(zhì)判斷出在(0,+∞)上的單調(diào)性,討論x的取值,分別建立不等關(guān)系,然后根據(jù)單調(diào)性即可求出滿足條件的x.
解答:解:(1)∵f(x)是奇函數(shù)
∴f(-3)=-f(3)=0即f(3)=0
(2)
x>0
f(x)>f(3)
x<0
f(x)>f(-3)

結(jié)合奇函數(shù)的性質(zhì)可知函數(shù)f(x)在(-∞,0)上是減函數(shù),在(0,+∞)上是減函數(shù)
∴f(x)>0的x的集合為:(-∞,-3)∪(0,3).
點評:本題主要考查了函數(shù)恒成立問題,以及函數(shù)單調(diào)性的應(yīng)用和奇偶性,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在非零實數(shù)集上的函數(shù)f(x)滿足f(xy)=f(x)+f(y),且f(x)是區(qū)間(0,+∞)上的遞增函數(shù)
(1)求f(1),f(-1)的值;
(2)求證:f(-x)=f(x);
(3)解關(guān)于x的不等式:f(2)+f(x-
12
)≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在非零實數(shù)集上的函數(shù)f(x)對任意非零實數(shù)x,y恒有f(xy)=f(x)+f(y),當x∈(0,+∞)時,f(x)為增函數(shù),
且f(2)=1.
(1)求f(1),f(-1)的值,并求證:f(x)為偶函數(shù);
(2)判斷并證明f(x)在(-∞,0)的單調(diào)性;
(3)解不等式:f(x)-f(x-2)>3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為定義在非零實數(shù)集上的可導(dǎo)函數(shù),且f(x)>xf′(x)在定義域上恒成立,則( �。�

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在非零實數(shù)集上的函數(shù)f(x)滿足關(guān)系式f(xy)=f(x)+f(y)且f(x)在區(qū)間(0,+∞)上是增函數(shù)
(1)判斷函數(shù)f(x)的奇偶性并證明你的結(jié)論;
(2)解不等式f(x)+f(x-
12
)≤0.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹