已知函數(shù),若對于任一實(shí)數(shù),的值至少有一個為正數(shù),則實(shí)數(shù)的取值范圍是(    )

A.          B.          C.        D.

 

【答案】

【解析】

試題分析:當(dāng)即-4<m<4時(shí),顯然成立;當(dāng)時(shí),顯然不成立;當(dāng)顯然成立;當(dāng)時(shí),則兩根為負(fù),結(jié)論成立,故,選D

考點(diǎn):本題考查了二次函數(shù)及一次函數(shù)圖象的運(yùn)用

點(diǎn)評:根據(jù)函數(shù)圖象特點(diǎn)進(jìn)行分類討論是解決此類問題的常用方法

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當(dāng)a,b,c能作為一個三角形的三邊長時(shí),f(a)、f(b)、f(c)也總能作為某個三角形的三邊長,試分別探究下面兩個問題:
(1)當(dāng)1<M<2時(shí),是否存在a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個三角形的三邊長時(shí),以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個三角形的三邊長時(shí),f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(上海秋季)解析版(理) 題型:解答題

 [番茄花園1] 本題共有3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。

若實(shí)數(shù)、滿足,則稱遠(yuǎn)離.

(1)若比1遠(yuǎn)離0,求的取值范圍;

(2)對任意兩個不相等的正數(shù)、,證明:遠(yuǎn)離

(3)已知函數(shù)的定義域.任取,等于中遠(yuǎn)離0的那個值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

23本題共有3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.

已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).

(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);

(2)設(shè)直線交橢圓、兩點(diǎn),交直線于點(diǎn).若,證明:的中點(diǎn);

(3)對于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個交點(diǎn)、滿足,寫出求作點(diǎn)的步驟,并求出使、存在的θ的取值范圍.

 

 

 

 


 [番茄花園1]22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當(dāng)a,b,c能作為一個三角形的三邊長時(shí),f(a)、f(b)、f(c)也總能作為某個三角形的三邊長,試分別探究下面兩個問題:
(1)當(dāng)1<M<2時(shí),是否存在a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個三角形的三邊長時(shí),以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個三角形的三邊長時(shí),f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當(dāng)a,b,c能作為一個三角形的三邊長時(shí),f(a)、f(b)、f(c)也總能作為某個三角形的三邊長,試分別探究下面兩個問題:
(1)當(dāng)1<M<2時(shí),是否存在a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個三角形的三邊長時(shí),以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個三角形的三邊長時(shí),f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省廈門外國語中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=log2x
(Ⅰ)若f(x)的反函數(shù)是函數(shù)y=g(x),解方程g(2x)=2g(x)+10;
(Ⅱ)對于任意a、b、c∈[M,+∞),M>1且a≥b≥c.當(dāng)a,b,c能作為一個三角形的三邊長時(shí),f(a)、f(b)、f(c)也總能作為某個三角形的三邊長,試分別探究下面兩個問題:
(1)當(dāng)1<M<2時(shí),是否存在a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個三角形的三邊長時(shí),以f(a)、f(b)、f(c)不能作為三角形的三邊長.
(2)M≥2,證明:對于任a、b、c∈[M,+∞),且a≥b≥c,當(dāng)a、b、c能作為一個三角形的三邊長時(shí),f(a)、f(b)、f(c)總能作為三角形的三邊長.

查看答案和解析>>

同步練習(xí)冊答案