【題目】數(shù)列{an}滿足2nan+1=(n+1)an , 其前n項(xiàng)和為Sn , 若 ,則使得 最小的n值為(
A.8
B.9
C.10
D.11

【答案】D
【解析】解:∵2nan+1=(n+1)an , ∴ =
,
可得 = n1=( n ,
即有an=n( n ,
前n項(xiàng)和為Sn=1( 1+2( 2+…+n( n ,
Sn=1( 2+2( 3+…+n( n+1
兩式相減可得, Sn=( 1+( 2+…+( n﹣n( n+1
= ﹣n( n+1 ,
化簡可得Sn=2﹣(n+2)( n
即為(n+2)( n n( n ,
化簡可得n>10,
則n的最小值為11.
故選:D.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=exlnx(x>0),若對 使得方程f(x)=k有解,則實(shí)數(shù)a的取值范圍是(
A.(0,ee]
B.[ee , +∞)
C.[e,+∞)
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,函數(shù) .
(1)當(dāng) 時(shí),解不等式
(2)若關(guān)于 的方程 的解集中恰好有一個(gè)元素,求 的取值范圍;
(3)設(shè) ,若對任意 ,函數(shù) 在區(qū)間 上的最大值與最小值的差不超過1,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)既是奇函數(shù),又在間區(qū) 上單調(diào)遞減的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的頂點(diǎn)坐標(biāo)為,,, 點(diǎn)P的橫坐標(biāo)為14,且點(diǎn)是邊上一點(diǎn),.

(1)求實(shí)數(shù)的值及點(diǎn)的坐標(biāo);

(2)為線段(含端點(diǎn))上的一個(gè)動(dòng)點(diǎn)試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+)﹣1(ω>0,|φ|<π)的一個(gè)零點(diǎn)是 ,其圖象上一條對稱軸方程為 ,則當(dāng)ω取最小值時(shí),下列說法正確的是 . (填寫所有正確說法的序號(hào)) ①當(dāng) 時(shí),函數(shù)f(x)單調(diào)遞增;
②當(dāng) 時(shí),函數(shù)f(x)單調(diào)遞減;
③函數(shù)f(x)的圖象關(guān)于點(diǎn) 對稱;
④函數(shù)f(x)的圖象關(guān)于直線 對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)當(dāng)時(shí),解不等式

2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求的取值范圍;

(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,a∈R.
(Ⅰ)當(dāng)a∈[1,e2]時(shí),討論函數(shù)f(x)的零點(diǎn)的個(gè)數(shù);
(Ⅱ)令g(x)=tx2﹣4x+1,t∈[﹣2,2],當(dāng)a∈[1,e]時(shí),證明:對任意的 ,存在x2∈[0,1],使得f(x1)=g(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 的有 條弦,且任意兩條弦都彼此相交,任意三條弦不共點(diǎn),這 條弦將圓 分成了 個(gè)區(qū)域,(例如:如圖所示,圓 的一條弦將圓 分成了2(即 )個(gè)區(qū)域,圓 的兩條弦將圓 分成了4(即 )個(gè)區(qū)域,圓 的3條弦將圓 分成了7(即 )個(gè)區(qū)域),以此類推,那么 之間的遞推式關(guān)系為:

查看答案和解析>>

同步練習(xí)冊答案