Processing math: 70%
5.在等腰直角三角形ABC中,AB=AC=4,點(diǎn)P是邊上異于A,B的一點(diǎn).光線從點(diǎn)P出發(fā),經(jīng)BC,CA反射后又回到點(diǎn)P(如圖).若光線QR經(jīng)過(guò)△ABC的重心,則AP等于( �。�
A.2B.1C.83D.43

分析 建立坐標(biāo)系,設(shè)點(diǎn)P的坐標(biāo),可得P關(guān)于直線BC的對(duì)稱點(diǎn)P1的坐標(biāo),和P關(guān)于y軸的對(duì)稱點(diǎn)P2的坐標(biāo),由P1,Q,R,P2四點(diǎn)共線可得直線的方程,由于過(guò)△ABC的重心,代入可得關(guān)于a的方程,解之可得P的坐標(biāo),進(jìn)而可得AP的值.

解答 解:以A為原點(diǎn),AB為x軸,AC為y軸建立直角坐標(biāo)系如圖所示.則A(0,0),B(4,0),C(0,4).
設(shè)△ABC的重心為D,則D點(diǎn)坐標(biāo)為4343,設(shè)P點(diǎn)坐標(biāo)為(m,0),則P點(diǎn)關(guān)于y軸對(duì)稱點(diǎn)P1為(-m,0),
因?yàn)橹本€BC方程為x+y-4=0,
所以P點(diǎn)關(guān)于BC的對(duì)稱點(diǎn)P2為(4,4-m),
根據(jù)光線反射原理,P1,P2均在QR所在直線上,∴kP1D=kP2D,
4343+m=434+m434
解得,m=43或m=0.當(dāng)m=0時(shí),P點(diǎn)與A點(diǎn)重合,故舍去.∴m=43
故選:D.

點(diǎn)評(píng) 本題考查直線與點(diǎn)的對(duì)稱問(wèn)題,涉及直線方程的求解以及光的反射原理的應(yīng)用,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若不等式22x1+alog12x在區(qū)間[1,2]上恒成立,則a的取值范圍是( �。�
A.a<-2B.a>-2C.a<-9D.a>-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知全集為R,M={x|x(x-3)<0},N={x|x<1或x≥3},則正確的為( �。�
A.M⊆NB.N⊆MC.RN⊆MD.M⊆∁RN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知P是橢圓x24+y2=1上的動(dòng)點(diǎn),則P點(diǎn)到直線l:x+y-25=0的距離的最小值為( �。�
A.102B.52C.105D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在三棱臺(tái)ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:AC⊥BF;         
(2)求證:BF⊥平面ACFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:?x0∈R,x0-2>1gx0;命題q:?x∈R,x2+x+1>0,給出下列結(jié)論(  )
①命題“p∧q”是真命題;     
②命題“p∧(¬q)”是假命題;
③命題“(¬p)∨q”是真命題;  
④命題“p∨(¬q)”是假命題.
A.②③B.①④C.①③④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知cos(\frac{π}{6}-x)=-\frac{{\sqrt{3}}}{3},則cos(\frac{5π}{6}+x)+sin(\frac{2π}{3}-x)=( �。�
A.-\sqrt{3}B.-1C.0D.\sqrt{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列{an}滿足{a_1}+{a_3}=\frac{5}{8},{a_{n+1}}=2{a_n},其前n項(xiàng)和為Sn,則Sn-2an的值為-\frac{1}{8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若二次函數(shù)f(x)=x2+ax+4在區(qū)間(-∞,3)單調(diào)遞減,則a的取值范圍是( �。�
A.(-6,+∞)B.[-6,+∞)C.(-∞,-6)D.(-∞,-6]

查看答案和解析>>

同步練習(xí)冊(cè)答案