【題目】已知?jiǎng)又本垂直于軸,與橢圓交于兩點(diǎn),點(diǎn)在直線上,.

1)求點(diǎn)的軌跡的方程;

2)直線與橢圓相交于,與曲線相切于點(diǎn),為坐標(biāo)原點(diǎn),求的取值范圍.

【答案】(1) ;(2)

【解析】

1)設(shè)出兩點(diǎn)的坐標(biāo),根據(jù)對(duì)稱性得到點(diǎn)坐標(biāo),利用平面向量數(shù)量積的坐標(biāo)運(yùn)算化簡(jiǎn),求得兩點(diǎn)坐標(biāo)的關(guān)系,將點(diǎn)坐標(biāo)代入橢圓方程,化簡(jiǎn)求得點(diǎn)的軌跡方程.

2)當(dāng)直線斜率不存在時(shí),根據(jù)橢圓的幾何性質(zhì)求得.當(dāng)直線的斜率存在時(shí),設(shè)出直線的方程,代入方程,利用判別式為零列出關(guān)系.將代入方程,化簡(jiǎn)后寫出韋達(dá)定理,計(jì)算出的表達(dá)式,并利用換元法和二次函數(shù)的性質(zhì),求得的取值范圍.

1)設(shè),則由題知,,

,

在橢圓上,得,所以,

故點(diǎn)的軌跡的方程為;

2)當(dāng)直線的斜率不存在時(shí),的左(或右)頂點(diǎn),也是的左(或右)焦點(diǎn),所以;

當(dāng)直線的斜率存在時(shí),設(shè)其方程為,

,

,所以

,

,,

所以,當(dāng)時(shí),即時(shí),取最大值,當(dāng)時(shí),即時(shí),取最小值;綜上:的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是數(shù)列的前項(xiàng)和,對(duì)任意都有成立(其中是常數(shù)).

1)當(dāng)時(shí),求

2)當(dāng)時(shí),

①若,求數(shù)列的通項(xiàng)公式:

②設(shè)數(shù)列中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是數(shù)列,如果,試問:是否存在數(shù)列數(shù)列,使得對(duì)任意,都有,且,若存在,求數(shù)列的首項(xiàng)的所有取值構(gòu)成的集合;若不存在.說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),直線,點(diǎn)在直線上移動(dòng),是線段軸的交點(diǎn),動(dòng)點(diǎn)滿足:.

1)求動(dòng)點(diǎn)的軌跡方程;

2)若直線與曲線交于,兩點(diǎn),過點(diǎn)作直線的垂線與曲線相交于,兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某創(chuàng)新團(tuán)隊(duì)擬開發(fā)一種新產(chǎn)品,根據(jù)市場(chǎng)調(diào)查估計(jì)能獲得10萬元到1000萬元的收益,先準(zhǔn)備制定一個(gè)獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬元)隨收益(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過收益的20%

1)若建立函數(shù)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語言表示該團(tuán)隊(duì)對(duì)獎(jiǎng)勵(lì)函數(shù)模型的基本要求,并分析是否符合團(tuán)隊(duì)要求的獎(jiǎng)勵(lì)函數(shù)模型,并說明原因;

2)若該團(tuán)隊(duì)采用模型函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且曲線在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)a,b的值及函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于x的不等式恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線參數(shù)方程為為參數(shù)),將曲線上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)變?yōu)樵瓉淼?/span>,得到曲線.

1)求曲線的普通方程;

2)過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求取得最小值時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,一個(gè)長(zhǎng)軸頂點(diǎn)在直線上,若直線與橢圓交于,兩點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為.

1)求該橢圓的方程.

2)若,試問的面積是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】紙張的規(guī)格是指紙張制成后,經(jīng)過修整切邊,裁成一定的尺寸.現(xiàn)在我國采用國際標(biāo)準(zhǔn),規(guī)定以、、、等標(biāo)記來表示紙張的幅面規(guī)格.復(fù)印紙幅面規(guī)格只采用系列和系列,其中系列的幅面規(guī)格為:①、、所有規(guī)格的紙張的幅寬(以表示)和長(zhǎng)度(以表示)的比例關(guān)系都為;②將紙張沿長(zhǎng)度方向?qū)﹂_成兩等分,便成為規(guī)格,紙張沿長(zhǎng)度方向?qū)﹂_成兩等分,便成為規(guī)格,,如此對(duì)開至規(guī)格.現(xiàn)有、、、紙各一張.紙的寬度為,則紙的面積為________;這張紙的面積之和等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班上午有五節(jié)課,分別安排語文,數(shù)學(xué),英語,物理,化學(xué)各一節(jié)課.要求語文與化學(xué)相鄰,數(shù)學(xué)與物理不相鄰,且數(shù)學(xué)課不排第一節(jié),則不同排課法的種數(shù)是

A. 24B. 16C. 8D. 12

查看答案和解析>>

同步練習(xí)冊(cè)答案