【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線的直角坐標(biāo)方程為.

1)求的極坐標(biāo)方程;

2)在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,求.

【答案】1,.2

【解析】

1)將的參數(shù)方程化為直角方程,在根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可求得極坐標(biāo)方程,將的直角方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可求得極坐標(biāo)方程,即可求得答案;

2)射線的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為,由(1)得:的極坐標(biāo)方程:,極坐標(biāo)方程為:,求得,即可求得的值.

1的參數(shù)方程為為參數(shù)),

可得:,

故:

即:直角方程為,

整理可得:

根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式:

的極坐標(biāo)方程:

的直角坐標(biāo)方程為:

根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,可得極坐標(biāo)方程為:

2射線的異于極點(diǎn)的交點(diǎn)為,與的異于極點(diǎn)的交點(diǎn)為

由(1)得:的極坐標(biāo)方程:,極坐標(biāo)方程為:

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將圓上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?/span>,得曲線

1)求出的參數(shù)方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),求點(diǎn)到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列中,已知公差, ,且, 成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求.

【答案】(1);(2)100

【解析】試題分析:(1)根據(jù)題意, , 成等比數(shù)列得求出d即可得通項(xiàng)公式;(2)求項(xiàng)的絕對(duì)前n項(xiàng)和,首先分清數(shù)列有多少項(xiàng)正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),然后正數(shù)項(xiàng)絕對(duì)值數(shù)值不變,負(fù)數(shù)項(xiàng)絕對(duì)值要變號(hào),從而得,得,由,得,∴ 計(jì)算 即可得出結(jié)論

解析:(1)由題意可得,則 ,

,即,

化簡(jiǎn)得,解得(舍去).

.

(2)由(1)得時(shí),

,得,由,得,

.

.

點(diǎn)睛:對(duì)于數(shù)列第一問首先要熟悉等差和等比通項(xiàng)公式及其性質(zhì)即可輕松解決,對(duì)于第二問前n項(xiàng)的絕對(duì)值的和問題,首先要找到數(shù)列由多少正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而找到絕對(duì)值所影響的項(xiàng),然后在求解即可得結(jié)論

型】解答
結(jié)束】
18

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請(qǐng)將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機(jī)選取一名推銷員,對(duì)他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請(qǐng)回答下面問題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在首屆中國(guó)國(guó)際商品博覽會(huì)期間,甲、乙、丙三家供貨公司各簽訂了兩個(gè)供貨合同,已知這三家公司供貨合同中金額分別是300萬(wàn)元和600萬(wàn)元、300萬(wàn)元和900萬(wàn)元、600萬(wàn)元和900萬(wàn)元,甲看了乙的供貨合同說:我與乙的供貨合同中金額相同的合同不是600萬(wàn)元,乙看了丙的供貨合同說:我與丙的供貨合同中金額相同的合同不是300萬(wàn)元,丙說:我的兩個(gè)供貨合同中金額之和不是1500萬(wàn)元,則甲簽訂的兩個(gè)供貨合同中金額之和是(

A.900萬(wàn)B.1500萬(wàn)元C.不能確定D.1200萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).

1)若=0,求函數(shù)的單調(diào)區(qū)間;

2)若,證明0時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是正整數(shù).在一個(gè)十進(jìn)制位數(shù)的各位數(shù)字中,若含有數(shù)字8,則在每個(gè)數(shù)字8的前一位數(shù)字就不能是數(shù)字3(即不能出現(xiàn)38字樣).試求出所有這樣的位數(shù)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)延遲退休年齡政策為了了解人們對(duì)延遲退休年齡政策的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15-65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

年齡

支持延遲退休的人數(shù)

15

5

15

28

17

1)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過005的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)延遲退休年齡政策的支持度有差異;

45歲以下

45歲以上

總計(jì)

支持

不支持

總計(jì)

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

2)若以45歲為分界點(diǎn),從不支持延遲退休的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng)、現(xiàn)從這8人中隨機(jī)抽2人.記抽到45歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知圓C的圓心,半徑r=3.

1)求圓C的極坐標(biāo)方程;

2)若Q點(diǎn)在圓C上運(yùn)動(dòng),POQ的延長(zhǎng)線上,且,求動(dòng)點(diǎn)P的軌跡的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=aex2x+1

1)當(dāng)a1時(shí),求函數(shù)fx)的極值;

2)若fx)>0對(duì)xR成立,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案