【題目】某重點(diǎn)中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以, , , , 分組的頻率分布直方圖如圖.

(1)求直方圖中的值;

(2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);

(3)在理科綜合分?jǐn)?shù)為, , , 的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在的學(xué)生中應(yīng)抽取多少人?

【答案】(1) (2)230, (3)5人

【解析】試題分析:(1)根據(jù)直方圖求出x的值即可;

(2)根據(jù)直方圖求出眾數(shù),設(shè)中位數(shù)為a,得到關(guān)于a的方程,解出即可;

(3)分別求出[220,240),[240,260),[260,280),[280,300]的用戶數(shù),根據(jù)分層抽樣求出滿足條件的概率即可.

試題解析:

1)由

解得,直方圖中的值為

2)理科綜合分?jǐn)?shù)的眾數(shù)是,

理科綜合分?jǐn)?shù)的中位數(shù)在內(nèi),設(shè)中位數(shù)為

,

解得,即中位數(shù)為

3)理科綜合分?jǐn)?shù)在的學(xué)生有(位),

同理可求理科綜合分?jǐn)?shù)為, , 的用戶分別有15位、10位、5位,

故抽取比為

從理科綜合分?jǐn)?shù)在的學(xué)生中應(yīng)抽取人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐,四邊形是矩形,平面平面, 中點(diǎn).

Ⅰ)求證: 平面;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點(diǎn)分別為F1 F2,直線l1過點(diǎn)F1且垂直于橢圓的長軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M.

(1)求點(diǎn)M的軌跡的方程;

2)設(shè)x軸交于點(diǎn)Q, 上不同于點(diǎn)Q的兩點(diǎn)R、S,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),畫出函數(shù)的大致圖像;

(2)當(dāng)時(shí),根據(jù)圖像寫出函數(shù)的單調(diào)減區(qū)間,并用定義證明你的結(jié)論;

(3)試討論關(guān)于x的方程解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為,不垂直軸且不過點(diǎn)的直線與橢圓相交于兩點(diǎn).

1)若直線經(jīng)過點(diǎn),則直線、的斜率之和是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由;

2)如果,原點(diǎn)到直線的距離為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是兩個(gè)獨(dú)立的轉(zhuǎn)盤(A)、(B),在兩個(gè)圖中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤進(jìn)行游戲,規(guī)則是:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤待指針停下(當(dāng)兩個(gè)轉(zhuǎn)盤中任意一個(gè)指針恰好落在分界線時(shí),則這次轉(zhuǎn)動(dòng)無效,重新開始),記轉(zhuǎn)盤(A)指針?biāo)鶎?duì)的區(qū)域?yàn)閤,轉(zhuǎn)盤(B)指針?biāo)鶎?duì)的區(qū)域?yàn)閥,x、y∈{1,2,3},設(shè)x+y的值為ξ.

(1)求x<2且y>1的概率;
(2)求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)fx)的最小正周期及單調(diào)遞增區(qū)間;

(2)求fx)在區(qū)間上的最大值和最小值及相應(yīng)的x值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且在區(qū)間(﹣∞,0)是單調(diào)遞增的,若S1= x2dx,S2= dx,S3= exdx,則f(S1),f(S2),f(S3)的大小關(guān)系是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 +y2=1(m>1)與雙曲線C2 ﹣y2=1(n>0)的焦點(diǎn)重合,e1 , e2分別為C1 , C2的離心率,則( 。
A.m>n且e1e2>1
B.m>n且e1e2<1
C.m<n且e1e2>1
D.m<n且e1e2<1

查看答案和解析>>

同步練習(xí)冊(cè)答案