【題目】某校舉辦校園科技文化藝術(shù)節(jié),在同一時間安排《生活趣味數(shù)學(xué)》和《校園舞蹈賞析》兩場講座.已知兩學(xué)習(xí)小組各有位同學(xué),每位同學(xué)在兩場講座任意選聽一場.若人選聽《生活趣味數(shù)學(xué)》,其余人選聽《校園舞蹈賞析》;人選聽《生活趣味數(shù)學(xué)》,其余人選聽《校園舞蹈賞析》.

(1)若從此人中任意選出人,求選出的人中恰有人選聽《校園舞蹈賞析》的概率;

(2)若從兩組中各任選人,設(shè)為選出的人中選聽《生活趣味數(shù)學(xué)》的人數(shù),求的分布列.

【答案】(1);(2)見解析

【解析】

(1)利用相互獨(dú)立事件與古典概率計(jì)算公式即可得出(2)X可能的取值為,利用相互獨(dú)立事件、互斥事件的概率計(jì)算公式即可得出概率、分布列與數(shù)學(xué)期望.

設(shè)“選出的3人中恰2人選聽《校園舞蹈賞析”為事件

,

答:選出的3人中恰2人選聽《校園舞蹈賞析》的概率為.

可能的取值為

,

,故.

所以的分布列為:

X

0

1

2

3

所以的數(shù)學(xué)期望

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)斜率不為0的直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),記直線的斜率分別為.

(1)求證:的值與直線的斜率的大小無關(guān);

(2)設(shè)拋物線的焦點(diǎn)為,若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在(0, )上的函數(shù)f(x),f′(x)為其導(dǎo)函數(shù),且f(x)<f′(x)tanx恒成立,則(
A. f( )> f(
B. f( )<f( )??
C. f( )>f(
D.f(1)<2f( )?sin1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯誤的是(
A.f(x)是偶函數(shù)
B.函f(x)最小值為
C. 是函f(x)的一個周期
D.函f(x)在(0, )內(nèi)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn滿足bn+1﹣bn=an , 且b2=﹣18,b3=﹣24.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求bn取得最小值時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)D在邊BC的延長線上,且BC=2CD,AD=

(1)求CD的長;
(2)求sin∠BAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,F(xiàn)為橢圓E:的右焦點(diǎn),過F作兩條相互垂直的直線AB,CD,與橢圓E分別交于A,B和點(diǎn)C,D.

(1)當(dāng)AB=時,求直線AB的方程;

(2)直線AB交直線x=3于點(diǎn)M,OM與CD交于P,CO與橢圓E交于Q,求證:OM∥DQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個不同的零點(diǎn),記min{m,n}= ,則min{h(0),h(1)}的取值范圍為

查看答案和解析>>

同步練習(xí)冊答案