△ABC中,內(nèi)切圓I和邊BC、CA、AB分別相切于點(diǎn)D、E、F,則∠FDE與 ∠A的關(guān)系是( )
A.∠FDE+∠A=90°
B.∠FDE=∠A
C.∠FDE+∠A=180°
D.無(wú)法確定
【答案】分析:連接IE,IF,則有∠AEI=∠IFA=90°,∠EIF=180°-∠A,由圓周角定理知,∠FDE=∠EIF=90°+∠A,所以可求得∠FDE+∠A=90°.
解答:解:連接IE,IF,則有∠AEI=∠IFA=90°,
∴∠EIF=180°-∠A,
∴∠FDE=∠EIF=90°-∠A,
∴∠FDE+∠A=90°.
故選A.
點(diǎn)評(píng):本題考查了圓的切線(xiàn)的性質(zhì)定理的證明,利用了切線(xiàn)的概念,圓周角定理求解.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,內(nèi)切圓I和邊BC、CA、AB分別相切于點(diǎn)D、E、F,則∠FDE與
1
2
∠A的關(guān)系是( 。
A、∠FDE+
1
2
∠A=90°
B、∠FDE=
1
2
∠A
C、∠FDE+
1
2
∠A=180°
D、無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年四川省成都市石室中學(xué)高三(上)8月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

△ABC中,內(nèi)切圓I和邊BC、CA、AB分別相切于點(diǎn)D、E、F,則∠FDE與 ∠A的關(guān)系是( )
A.∠FDE+∠A=90°
B.∠FDE=∠A
C.∠FDE+∠A=180°
D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省高考數(shù)學(xué)一輪復(fù)習(xí)單元試卷15:空間中有關(guān)角(解析版) 題型:選擇題

△ABC中,內(nèi)切圓I和邊BC、CA、AB分別相切于點(diǎn)D、E、F,則∠FDE與 ∠A的關(guān)系是( )
A.∠FDE+∠A=90°
B.∠FDE=∠A
C.∠FDE+∠A=180°
D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005年福建省高考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

△ABC中,內(nèi)切圓I和邊BC、CA、AB分別相切于點(diǎn)D、E、F,則∠FDE與 ∠A的關(guān)系是( )
A.∠FDE+∠A=90°
B.∠FDE=∠A
C.∠FDE+∠A=180°
D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案