求y=x2在x=x0附近的平均變化率.

分析:求平均變化率也就是求=.

解: ===2x0+Δx.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x2-1與y=1+x3在x=x0處的切線互相垂直,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=alnx-bx2圖象上一點P(2,f(2))處的切線方程為y=-3x+2ln2+2.
(1)求f(x)的單調(diào)增區(qū)間;
(2)令g(x)=f(x)-kx(k∈R),如果g(x)圖象與x軸交于A(x1,0),B(x2,0)(x1<x2)兩點,AB的中點為G(x0,0),問g(x)在x=x0處是否取得極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)已知函數(shù)f(x)=-x3+x2+bx,g(x)=alnx,(a>0).
(1)若f(x)存在極值點,求實數(shù)b的取值范圍;
(2)當(dāng)b=0時,令F(x)=
f(x),x<1
g(x),x≥1
.P(x1,F(xiàn)(x1)),Q(x2,F(xiàn)(x2))為曲線y=F(x)上的兩動點,O為坐標(biāo)原點,請完成下面兩個問題:
①能否使得△POQ是以O(shè)為直角頂點的直角三角形,且斜邊中點在y軸上?請說明理由.
②當(dāng)1<x1<x2時,若存在x0∈(x1,x2),使得曲線y=F(x)在x=x0處的切線l∥PQ,
求證:x0
x1+x2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
p
=(a-3,x),
q
=(x+a,x),f(x)=
p
q
,且m,n是方程f(x)=0的兩個實根,
(1)設(shè)g(a)=m3+n3+a3,求g(a)的最小值;
(2)若不等式lnx-
b
x
x2
在x∈[1,+∞)上恒成立,求實數(shù)b的取值范圍;
(3)對于(1)中的函數(shù)y=g(a),給定函數(shù)h(x)=c(xlnx-x3),(c<0),若對任意的x0∈[2,3],總存在x1∈[1,2],使得g(x0)=h(x1),求實數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案