【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計(jì)劃在空地上修建一個(gè)矩形的活動(dòng)場(chǎng)地OCDE及一矩形停車(chē)場(chǎng)EFGH,剩余的地方進(jìn)行綠化.若,設(shè)

(Ⅰ)記活動(dòng)場(chǎng)地與停車(chē)場(chǎng)占地總面積為,求的表達(dá)式;

(Ⅱ)當(dāng)為何值時(shí),可使活動(dòng)場(chǎng)地與停車(chē)場(chǎng)占地總面積最大.

【答案】(Ⅰ) 其中;

(Ⅱ)時(shí),可使活動(dòng)場(chǎng)地與停車(chē)場(chǎng)占地總面積最大.

【解析】

(Ⅰ)由題意求得矩形和矩形的面積()求的導(dǎo)數(shù),利用,

判斷的單調(diào)性,求最大值即可.

由題意得,在矩形OCDE中,,,,

矩形OCDE的面積為;

,四邊形EFGH是矩形,,

矩形EFGH的面積為,

,其中;

由題意知,,

,得,

解得,或不合題意,舍去

,則;

當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),取得最大值;

時(shí),可使活動(dòng)場(chǎng)地與停車(chē)場(chǎng)占地總面積最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)判斷的奇偶性,并證明;

2)用定義證明函數(shù)上單調(diào)遞減;

3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)成就的杰出代表作,其中《方田》章給出計(jì)算弧田面積所用的經(jīng)驗(yàn)方式為:弧田面積=,弧田(如圖)由圓弧和其所對(duì)弦所圍成,公式中“弦”指圓弧所對(duì)弦長(zhǎng),“矢”指半徑長(zhǎng)與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說(shuō)法正確的是( )

A. “弦”米,“矢”

B. 按照經(jīng)驗(yàn)公式計(jì)算所得弧田面積()平方米

C. 按照弓形的面積計(jì)算實(shí)際面積為()平方米

D. 按照經(jīng)驗(yàn)公式計(jì)算所得弧田面積比實(shí)際面積少算了大約0.9平方米(參考數(shù)據(jù) )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面為矩形,且,,若平面,分別是線段,的中點(diǎn).

(1)證明:

(2)在線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置:若不存在,說(shuō)明理由;

(3)若與平面所成的角為45°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)孩子的身高與年齡(周歲)具有相關(guān)關(guān)系,根據(jù)所采集的數(shù)據(jù)得到線性回歸方程,則下列說(shuō)法錯(cuò)誤的是(

A.回歸直線一定經(jīng)過(guò)樣本點(diǎn)中心

B.斜率的估計(jì)值等于6.217,說(shuō)明年齡每增加一個(gè)單位,身高就約增加6.217個(gè)單位

C.年齡為10時(shí),求得身高是,所以這名孩子的身高一定是

D.身高與年齡成正相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,方程,為不相等的兩個(gè)正數(shù))所代表的曲線是( )

A. 三角形 B. 正方形 C. 非正方形的長(zhǎng)方形 D. 非正方形的菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過(guò)且斜率為的直線交圓兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),

(1)求橢圓的方程.

(2)當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),(其中,),在上既無(wú)最大值,也無(wú)最小值,且,則下列結(jié)論成立的是(

A.對(duì)任意,則

B.的圖象關(guān)于點(diǎn)中心對(duì)稱(chēng)

C.函數(shù)的單調(diào)減區(qū)間為

D.函數(shù)的圖象相鄰兩條對(duì)稱(chēng)軸之間的距離是

查看答案和解析>>

同步練習(xí)冊(cè)答案