P是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上異于頂點(diǎn)的任意一點(diǎn),F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),則以PF2為直徑的圓與以長(zhǎng)軸為直徑的圓的位置是( 。
分析:畫出圖形,利用三角形的中位線與橢圓的定義,推出兩個(gè)圓的圓心距與半徑關(guān)系,推出結(jié)果.
解答:解:如圖:因?yàn)镻是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上異于頂點(diǎn)的任意一點(diǎn),F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),則以PF2為直徑的圓的半徑是
1
2
|PF2|
,以長(zhǎng)軸為直徑的圓的半徑為a,
OC
.
1
2
PF1
.圓心距|OC|=
1
2
PF1
,因?yàn)閨OC|+
1
2
|PF2|
=a,所以兩個(gè)圓相內(nèi)切
故選B.
點(diǎn)評(píng):本題考查橢圓的基本性質(zhì),橢圓的定義的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給定橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),稱圓心在坐標(biāo)原點(diǎn)O,半徑為
a2+b2
的圓是橢圓C的“伴隨圓”.
(1)若橢圓C過(guò)點(diǎn)(
5
,0)
,且焦距為4,求“伴隨圓”的方程;
(2)如果直線x+y=3
2
與橢圓C的“伴隨圓”有且只有一個(gè)交點(diǎn),那么請(qǐng)你畫出動(dòng)點(diǎn)Q(a,b)軌跡的大致圖形;
(3)已知橢圓C的兩個(gè)焦點(diǎn)分別是F1(-
2
,0)、F2
2
,0),橢圓C上一動(dòng)點(diǎn)M1滿足|
M1F1
|+|
M1F
2
|=2
3
.設(shè)點(diǎn)P是橢圓C的“伴隨圓”上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線l1、l2使得l1、l2與橢圓C都各只有一個(gè)交點(diǎn),且l1、l2分別交其“伴隨圓”于點(diǎn)M、N.當(dāng)P為“伴隨圓”與y軸正半軸的交點(diǎn)時(shí),求l1與l2的方程,并求線段|
MN
|
的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),點(diǎn)P(-1,
2
2
)
在橢圓上,線段PF2與y軸的交點(diǎn)M滿足
PM
=
MF2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)F2作不與x軸重合的直線l,l與圓x2+y2=a2+b2相交于A、B并與橢圓相交于C、D,當(dāng)
F1A
F1B
=λ,且λ∈[
2
3
,1]
時(shí),求△F1CD的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè) P(x,y),Q(x′,y′) 是橢圓 
x2
a2
+
y2
b2
=1
(a>0,b>0)上的兩點(diǎn),則下列四個(gè)結(jié)論:①a2+b2≥(x+y)2;②
1
x2
+
1
y2
≥(
1
a
+
1
b
)2
;③
a2
x2
+
b2
y2
≥4
;④
xx′
a2
+
yy′
b2
≤1
.其中正確的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•河?xùn)|區(qū)二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)

(1)設(shè)F是橢圓的一個(gè)焦點(diǎn),M橢圓上的任意一點(diǎn),|MF|的最大值與最小值的算術(shù)平均等于4,橢圓的頂點(diǎn)A與N(-2,0)關(guān)于直線x+y=0對(duì)稱,求此橢圓方程;
(2)設(shè)點(diǎn)P是橢圓
x2
a2
+
y2
b2
=1
上異于長(zhǎng)軸端點(diǎn)的任意一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),記∠F1PF2=θ,求證|PF1|•|PF2|=
2b2
1+cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•靜安區(qū)一模)已知橢圓
x2
a2
+
y2
b2
=1
的兩個(gè)焦點(diǎn)為F1(-c,0)、F2(c,0),c2是a2與b2的等差中項(xiàng),其中a、b、c都是正數(shù),過(guò)點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
3
2

(1)求橢圓的方程;
(2)點(diǎn)P是橢圓上一動(dòng)點(diǎn),定點(diǎn)A1(0,2),求△F1PA1面積的最大值;
(3)已知定點(diǎn)E(-1,0),直線y=kx+t與橢圓交于C、D相異兩點(diǎn).證明:對(duì)任意的t>0,都存在實(shí)數(shù)k,使得以線段CD為直徑的圓過(guò)E點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案