(文)在數(shù)列1,3,2,……中,前兩項以后的每一項等于它前面兩項之差(前面一項減去再前面一項).則該數(shù)列的前100項之和是


  1. A.
    5
  2. B.
    20
  3. C.
    300
  4. D.
    652
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,如果對任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.現(xiàn)給出以下命題,其中所有真命題的序號是
①④
①④

①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
②若數(shù)列{an}滿足an=(n-1)•2n-1,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
③等差數(shù)列是常數(shù)列是成為比等差數(shù)列的充分必要條件;
(文)④數(shù)列{an}滿足:an+1=an2+2an,a1=2,則此數(shù)列的通項為an=32n-1-1,且{an}不是比等差數(shù)列;
(理)④數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*)
,則此數(shù)列的通項為an=
n•3n
3n-1
,且{an}不是比等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:河北省保定市2009屆高三上學期調(diào)研考試數(shù)學試題(Word版) 題型:013

(文)在數(shù)列1,3,2,……中,前兩項以后的每一項等于它前面兩項之差(前面一項減去再前面一項).則該數(shù)列的前100項之和是

[  ]

A.5

B.20

C.300

D.652

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年萊陽一中學段檢測文)(12分)

已知在數(shù)列{an}中,已知,且

(1)求a2 ,a3

(2)求數(shù)列{an}的通項公式;

(3)設,求和:

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年上海市徐匯區(qū)高三上學期期末考試文科數(shù)學試卷(解析版) 題型:解答題

(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對于數(shù)列,從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學在學習了這一個概念之后,打算研究首項為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項,第三項和第五項.

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請給出數(shù)列的通項公式并證明;若不存在,說明理由;

(3) 他在研究過程中猜想了一個命題:“對于首項為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項,由的大小關系去判斷該命題是否正確. 他將得到什么結(jié)論?

 

查看答案和解析>>

同步練習冊答案