【題目】已知,,,是各項均為正數(shù)的等差數(shù)列,其公差大于零.若線段,,的長分別為,,,則( .

A.對任意的,均存在以,為三邊的三角形

B.對任意的,均不存在以,,為三邊的三角形

C.對任意的,均存在以,,為三邊的三角形

D.對任意的,均不存在以,為三邊的三角形

【答案】C

【解析】

利用等差數(shù)列的通項公式及其性質(zhì)、三角形兩邊之和大于第三邊,即可判斷出結(jié)論.

A:對任意的,假設(shè)均存在以,, 為三邊的三角形,∵,,是各項均為正數(shù)的等差數(shù)列,其公差大于零,, 不一定大于,因此不一定存在以,,為三邊的三角形,故不正確; B:由A可知:當(dāng)時,存在以為,,三邊的三角形,因此不正確; C:對任意的,由于 ,因此均存在以,,為三邊的三角形,正確; D.由C可知不正確. 故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海洋藍(lán)洞是地球罕見的自然地理現(xiàn)象,被喻為“地球留給人類保留宇宙秘密的最后遺產(chǎn)”,我國擁有世界上最深的海洋藍(lán)洞,若要測量如圖所示的藍(lán)洞的口徑,兩點(diǎn)間的距離,現(xiàn)在珊瑚群島上取兩點(diǎn),,測得,,,,則兩點(diǎn)的距離為___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是中國成立70周年,也是全面建成小康社會的關(guān)鍵之年.為了迎祖國70周年生日,全民齊心奮力建設(shè)小康社會,某校特舉辦喜迎國慶,共建小康知識競賽活動.下面的莖葉圖是參賽兩組選手答題得分情況,則下列說法正確的是(

A.甲組選手得分的平均數(shù)小于乙組選手的平均數(shù)B.甲組選手得分的中位數(shù)大于乙組選手的中位數(shù)

C.甲組選手得分的中位數(shù)等于乙組選手的中位數(shù)D.甲組選手得分的方差大于乙組選手的的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目,AB兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將A隊第六位選手的成績沒有給出,并且告知大家B隊的平均分比A隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得晉級”.

1)根據(jù)莖葉圖中的數(shù)據(jù),求出A隊第六位選手的成績;

2)主持人從A隊所有選手成績中隨機(jī)抽取2個,求至少有一個為晉級的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),C、D兩點(diǎn)的坐標(biāo)為,曲線上的動點(diǎn)P滿足.又曲線上的點(diǎn)AB滿足.

1)求曲線的方程;

2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);

3)求證:原點(diǎn)到直線AB的距離為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列,對任意都有,(其中kb、p是常數(shù)).

1)當(dāng),時,求;

2)當(dāng),,時,若,,求數(shù)列的通項公式;

3)若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是封閉數(shù)列.當(dāng),時,設(shè)是數(shù)列的前n項和,,試問:是否存在這樣的封閉數(shù)列,使得對任意,都有,且.若存在,求數(shù)列的首項的所有取值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列的前n組成集合,從集合中任取個數(shù),其所有可能的k個數(shù)的乘積的和為(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),例如:對于數(shù)列,當(dāng)時,時,;

1)若集合,求當(dāng)時,的值;

2)若集合,證明:時集合時集合(為了以示區(qū)別,用表示)有關(guān)系式,其中;

3)對于(2)中集合.定義,求(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】、是異面直線,則下列命題中的假命題為( 。

A.過直線可以作一個平面并且只可以作一個平面與直線平行

B.過直線至多可以作一個平面與直線垂直

C.唯一存在一個平面與直線等距

D.可能存在平面與直線、都垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知表示不小于的最小整數(shù),例如.

1)設(shè),,,求實數(shù)的取值范圍;

2)設(shè)在區(qū)間上的值域為,集合中元素的個數(shù)為,求證:;

3)設(shè)),,若對于,都有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案