(本題滿分16分)
已知圓:
,設(shè)點
是直線
:
上的兩點,它們的橫坐標分別
是,
點的縱坐標為
且點
在線段
上,過
點作圓
的切線
,切點為
(1)若,
,求直線
的方程;
(2)經(jīng)過三點的圓的圓心是
,
①將表示成
的函數(shù)
,并寫出定義域.
②求線段長的最小值
(1)直線PA的方程是或
(2)
.
【解析】本試題主要是考查直線與圓的位置關(guān)系的綜合運用。
(1)
解得
或
(舍去).
由題意知切線PA的斜率存在,設(shè)斜率為k.
所以直線PA的方程為,即
直線PA與圓M相切,
,解得
或
進而得到直線PA的方程是或
(2)與圓M相切于點A,
經(jīng)過
三點的圓的圓心D是線段MP的中點.
的坐標是
(
)
對于參數(shù)t討論得到最值。
(1)
解得
或
(舍去).
由題意知切線PA的斜率存在,設(shè)斜率為k.
所以直線PA的方程為,即
直線PA與圓M相切,
,解得
或
直線PA的方程是
或
(2)①
與圓M相切于點A,
經(jīng)過
三點的圓的圓心D是線段MP的中點.
的坐標是
(
)
②當,即
時,
當,即
時,
當,即
時
則.
科目:高中數(shù)學 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(
,
、
是常數(shù),且
),對定義域內(nèi)任意
(
、
且
),恒有
成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分16分)已知數(shù)列的前
項和為
,且
.數(shù)列
中,
,
.(1)求數(shù)列
的通項公式;(2)若存在常數(shù)
使數(shù)列
是等比數(shù)列,求數(shù)列
的通項公式;(3)求證:①
;②
.
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇省私立無錫光華學校2009—2010學年高二第二學期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在
上的單調(diào)性;
(2)若存在,使
,則稱
為函數(shù)
的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求
的值;
(3)若在
上恒成立 , 求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com