【題目】已知α∈[ , ],β∈[﹣ ,0],且(α﹣ 3﹣sinα﹣2=0,8β3+2cos2β+1=0,則sin( +β)的值為(
A.0
B.
C.
D.1

【答案】B
【解析】解:∵(α﹣ 3﹣sinα﹣2=0,

可得:(α﹣ 3﹣cos( )﹣2=0,即( ﹣α)3+cos( )+2=0

由8β3+2cos2β+1=0,

得(2β)3+cos2β+2=0,

∴可得f(x)=x3+cosx+2=0,

,x2=2β.

∵α∈[ , ],β∈[﹣ ,0],

∈[﹣π,0],2β∈[﹣π,0]

可知函數(shù)f(x)在x∈[﹣π,0]是單調(diào)增函數(shù),方程x3+cosx+2=0只有一個(gè)解,

可得 ,即 ,

,

那么sin( +β)=sin =

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的公比q>1,a1=1,且a1 , a3 , a2+14成等差數(shù)列,數(shù)列{bn}滿足a1b1+a2b2+…+anbn=(n﹣1)3n+1(n∈N*).
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=(﹣1)n ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出的S=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC. (Ⅰ)求直線PC與平面ABC所成角的大;
(Ⅱ)求二面角B﹣AP﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在直角梯形ABCD中,AD∥BC,∠BAD= ,AB=BC=1,AD=2,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到圖2中△A1BE的位置,得到四棱錐A1﹣BCDE.
(Ⅰ) 證明:CD⊥平面A1OC;
(Ⅱ) 若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.已知A﹣C=90°,a+c= b,求C.

查看答案和解析>>

同步練習(xí)冊(cè)答案