【題目】手機運動計步已成為一種時尚,某中學統(tǒng)計了該校教職工一天行走步數(shù)(單位:百步),繪制出如下頻率分布直方圖:
(Ⅰ)求直方圖中的值,并由頻率分布直方圖估計該校教職工一天步行數(shù)的中位數(shù);
(Ⅱ)若該校有教職工175人,試估計一天行走步數(shù)不大于130百步的人數(shù);
(Ⅲ)在(Ⅱ)的條件下該校從行走步數(shù)大于150百步的3組教職工中用分層抽樣的方法選取6人參加遠足活動,再從6人中選取2人擔任領(lǐng)隊,求這兩人均來自區(qū)間的概率.
【答案】(Ⅰ),中位數(shù)為125;(Ⅱ)98;(Ⅲ)
【解析】
(Ⅰ)利用各小矩形的面積之和為1即可得到a,中位數(shù)的估計值是小矩形面積和為時的x的值;
(Ⅱ)先算出一天步行數(shù)不大于130百步的的概率(前4個小矩形的面積之和),再乘以人數(shù)175即可;
(Ⅲ)先由分層抽樣確定出每組抽取的人數(shù),再結(jié)合古典概型的概率計算公式計算即可.
(Ⅰ)由題意得
,
解得,設(shè)中位數(shù)為,則
解得,所以中位數(shù)為125.
(Ⅱ)由,
所以估計一天步行數(shù)不大于130百步的人數(shù)為98人.
(Ⅲ)在區(qū)間中有28人,在區(qū)間中有7人,在區(qū)間中有7
人,按分層抽樣抽取6人,則從抽取4人,和中各抽取1
人,設(shè)從抽取,從中抽B,從中抽C,則從6
人中抽取2人的情況有:
共15種情況,
其中滿足兩人均來自區(qū)間的有,共6種情況,
所以概率,所以兩人均來自區(qū)間的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線和軸上的定點,過拋物線焦點作一條直線交于、兩點,連接并延長,交于、兩點.
(1)求證:直線過定點;
(2)求直線與直線最大夾角為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的參數(shù)方程為(其中為參數(shù)),以原點為極點,以軸為極軸建立極坐標系,曲線的極坐標方程為(為常數(shù),且),直線與曲線交于兩點.
(1)若,求實數(shù)的值;
(2)若點的直角坐標為,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)節(jié)高三學生學習壓力,某校高三年級舉行了拔河比賽,在賽前三位老師對前三名進行了預(yù)測,于是有了以下對話:老師甲:“7班男生比較壯,7班肯定得第一名”.老師乙:“我覺得14班比15班強,14班名次會比15班靠前”.老師丙:“我覺得7班能贏15班”.最后老師丁去觀看完了比賽,回來后說:“確實是這三個班得了前三名,且無并列,但是你們?nèi)酥兄挥幸蝗祟A(yù)測準確”.那么,獲得一、二、三名的班級依次為( )
A.7班、14班、15班B.14班、7班、15班
C.14班、15班、7班D.15班、14班、7班
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,垂直于所在的平面,為的直徑,是弧上的一個動點(不與端點重合),為上一點,且是線段上的一個動點(不與端點重合).
(1)求證:平面;
(2)若是弧的中點,是銳角,且三棱錐的體積為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三棱柱ABC﹣A1B1C1中,平面AA1B1B⊥平面ABC,AB=AA1=A1B=4,BC=2,AC=2,點F為AB的中點,點E為線段A1C1上的動點.
(1)求證:BC⊥平面A1EF;
(2)若∠B1EC1=60°,求四面體A1B1EF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程及直線的普通方程;
(2)設(shè)直線與曲線交于,兩點(點在點左邊)與直線交于點.求和的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線C:1(a0,b0)的左右焦點分別為F1,F2,點O為坐標原點,點P在雙曲線的右支上,且滿足|F1F2|=2|OP|.若直線PF2與雙曲線C只有一個交點,則雙曲線C的離心率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com