對(duì)數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個(gè)結(jié)論:
①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
③若數(shù)列{an}的通項(xiàng)公式為,則{an}為3階遞歸數(shù)列.
其中,正確結(jié)論的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
【答案】分析:利用等差數(shù)列、等比數(shù)列和數(shù)列{an}的通項(xiàng)公式為的性質(zhì),根據(jù)k階遞歸數(shù)列的定義,逐個(gè)進(jìn)行判斷,能夠求出結(jié)果.
解答:解:①∵{an}是等比數(shù)列,
∴an=,an+1=qan,
∴?k=1,λ=q,使an+k=qan+k-1成立,
∴{an}為1階遞歸數(shù)列,故①成立;
②∵{an}是等差數(shù)列,
∴an=a1+(n-1)d,
∴?k=2,λ1=2,λ2=-1,使an+21an+k-12an+k-2成立,
∴{an}為2階遞歸數(shù)列,故②成立;
③∵若數(shù)列{an}的通項(xiàng)公式為,
∴?k=3,λ1=3,λ2=-3,λ3=1,使an+31an+k-12an+k-23an+k-3成立,
∴{an}為3階遞歸數(shù)列,故③成立.
故選D.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意正確理解k階遞歸數(shù)列的定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于給定數(shù)列{cn},如果存在實(shí)常數(shù)p,q使得cn+1=pcn+q對(duì)于任意n∈N*都成立,我們稱數(shù)列{cn}是“M類數(shù)列”.
(1)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“M類數(shù)列”?若是,指出它對(duì)應(yīng)的實(shí)常數(shù)p,q,若不是,請(qǐng)說(shuō)明理由;
(2)證明:若數(shù)列{an}是“M類數(shù)列”,則數(shù)列{an+an+1}也是“M類數(shù)列”;
(3)若數(shù)列{an}滿足a1=2,an+an+1=3t•2n(n∈N*),t為常數(shù).求數(shù)列{an}前2009項(xiàng)的和.并判斷{an}是否為“M類數(shù)列”,說(shuō)明理由;
(4)根據(jù)對(duì)(2)(3)問(wèn)題的研究,對(duì)數(shù)列{an}的相鄰兩項(xiàng)an、an+1,提出一個(gè)條件或結(jié)論與“M類數(shù)列”概念相關(guān)的真命題,并探究其逆命題的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)二模)對(duì)數(shù)列{an},如果?k∈N*及λ1,λ2,…,λk∈R,使an+k1an+k-12an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個(gè)結(jié)論:
①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;
②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;
③若數(shù)列{an}的通項(xiàng)公式為an=n2,則{an}為3階遞歸數(shù)列.
其中,正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•奉賢區(qū)一模)對(duì)于數(shù)列{an},如果存在最小的一個(gè)常數(shù)T(T∈N*),使得對(duì)任意的正整數(shù)恒有an+T=an成立,則稱數(shù)列{an}是周期為T的周期數(shù)列.設(shè)m=qT+r,(m,q,T,r∈N*),數(shù)列前m,T,r項(xiàng)的和分別記為Sm,ST,Sr,則Sm,ST,Sr三者的關(guān)系式
Sm=qST+Sr
Sm=qST+Sr

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江西師大附中2012屆高三5月模擬考試數(shù)學(xué)理科試題 題型:013

對(duì)數(shù)列{an},如果k∈N*及λ1,λ2,…,λkR,使an+k=λ1an+k-1+λ2an+k-2+…+λkan成立,其中n∈N*,則稱{an}為k階遞歸數(shù)列.給出下列三個(gè)結(jié)論:

①若{an}是等比數(shù)列,則{an}為1階遞歸數(shù)列;

②若{an}是等差數(shù)列,則{an}為2階遞歸數(shù)列;

③若數(shù)列{an}的通項(xiàng)公式為an=n2,則{an}為3階遞歸數(shù)列.

其中正確結(jié)論的個(gè)數(shù)是

[  ]

A.0

B.1

C.2

D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案