過曲線y=
1
4
x4上一點,傾斜角為
π
4
的切線方程為(  )
A、4x-4y+3=0
B、4x-4y+5=0
C、4x-4y-3=0
D、4x-4y-5=0
分析:利用切線傾斜角為
π
4
,得到切線的斜率,也就是曲線在切點M處的導數(shù),通過計算,得出點M的坐標,再利用點斜式求出切線方程.
解答:解:設點M(x0,y0
∵切線傾斜角為
π
4
,
∴切線的斜率為1
∴曲線在點M處的導數(shù)y′=x03=1,即x0=1.
當x0=1時,y0=
1
4
,
利用點斜式得到切線方程:4x-4y-3=0;
故選C.
點評:本題考查的導數(shù)的幾何意義,屬于基礎題,該題還用到直線的傾斜角與其斜率的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

過曲線y=
1
4
x4上一點,傾斜角為
π
4
的切線方程為( 。
A.4x-4y+3=0B.4x-4y+5=0C.4x-4y-3=0D.4x-4y-5=0

查看答案和解析>>

同步練習冊答案