【題目】設(shè)函數(shù)
(1)當(dāng), 恒成立,求實(shí)數(shù)的取值范圍.
(2)設(shè)在上有兩個(gè)極值點(diǎn).
(A)求實(shí)數(shù)的取值范圍;
(B)求證: .
【答案】(1);(2)(A);(B)證明見(jiàn)解析;
【解析】試題分析:(1)構(gòu)造函數(shù),求導(dǎo)數(shù)分, , , 出函數(shù)的最值即可,
(2)函數(shù) 有兩個(gè)極值點(diǎn)、,即導(dǎo)函數(shù)g′(x)有兩個(gè)不同的實(shí)數(shù)根,對(duì)a進(jìn)行分類討論,不妨設(shè),則,構(gòu)造函數(shù), .,利用函數(shù)的單調(diào)性證明不等式.
試題解析:
解:(1)∵,且,
∴.
令,則.
①當(dāng)時(shí), , 在上為單調(diào)遞增函數(shù),
∴時(shí), ,不合題意.
②當(dāng)時(shí), 時(shí), , 在上為單調(diào)遞增函數(shù),
∴, ,不合題意.
③當(dāng)時(shí), , , 在上為單調(diào)遞減函數(shù).
∴時(shí), ,不合題意.
④當(dāng)時(shí), , , 在上為單調(diào)遞增函數(shù).
, , 在上為單調(diào)遞減函數(shù).
∴,符合題意.
綜上, .
(2), .
.
令,則
由已知在上有兩個(gè)不等的實(shí)根.
(A)①當(dāng)時(shí), , 在上為單調(diào)遞增函數(shù),不合題意.
②當(dāng)時(shí), , 在上為單調(diào)遞減函數(shù),不合題意.
③當(dāng)時(shí), , , , ,
所以, , , ,解得.
(B)由已知, ,
∴.
不妨設(shè),則,則 .
令, .
則,∴在上為單調(diào)遞增函數(shù),
∴
即,
∴,
∴,
∴,
由(A),
∴, ,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)a=0時(shí),求f(x)的極值.
(2)當(dāng)a≠0時(shí),若f(x)是減函數(shù),求a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ax2+4x﹣lnx.
(1)當(dāng)a=﹣3時(shí),求f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≠0時(shí),若f(x)是減函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|y= },B={x|log2x≤1},則A∩B=( )
A.{x|﹣3≤x≤1}
B.{x|0<x≤1}
C.{x|﹣3≤x≤2}
D.{x|x≤2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x,y滿足約束條件 ,且向量 =(3,2), =(x,y),則 的取值范圍( )
A.[ ,5]
B.[ ,5]
C.[ ,4]
D.[ ,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在信息時(shí)代的今天,隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方式,某機(jī)構(gòu)對(duì)“使用微
信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了人,他們年齡的頻數(shù)分布及對(duì) “使用微信交流”贊成的人數(shù)如
下表:(注:年齡單位:歲)
年齡 | ||||||
頻數(shù) | ||||||
贊成人數(shù) |
(1))若以“年齡歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并通過(guò)計(jì)算判斷是否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“使用微信交流的態(tài)度與人的年齡有關(guān)”?
年齡不低于歲的人數(shù) | 年齡低于歲的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(2))若從年齡在, 的別調(diào)查的人中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的人中贊成“使用微信交流”的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
附:參考數(shù)據(jù)如下:
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)數(shù)x,y滿足 ,
(1)若z=2x+y,求z的最大值;
(2)若z=x2+y2 , 求z的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)兩向量e1、e2滿足| |=2,| |=1, 、 的夾角為60°,若向量2t +7 與向量 +t 的夾角為鈍角,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓 =1上有一點(diǎn)M(﹣4, )在拋物線y2=2px(p>0)的準(zhǔn)線l上,拋物線的焦點(diǎn)也是橢圓焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)N在拋物線上,過(guò)N作準(zhǔn)線l的垂線,垂足為Q,求|MN|+|NQ|的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com