【題目】已知函數(shù),,(其中是自然對數(shù)的底數(shù)).
(1)若,求函數(shù)在上的最大值.
(2)若,關于x的方程有且僅有一個根,求實數(shù)k的取值范圍.
(3)若對任意的、,,不等式都成立,求實數(shù)a的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)若,則,利用導數(shù)法可得函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,結(jié)合又,可得函數(shù)在上的最大值;
(2)若,關于的方程有且僅有一個根,即有且只有一個根,令,可得,進而可得當時,有且只有一個根.
(3)設,因為在,單調(diào)遞增,故原不等式等價于在、,,且恒成立,當恒成立時,;當恒成立時,,綜合討論結(jié)果,可得實數(shù)的取值范圍.
解:(1)若,則,
,
時,,時,,
函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
又,
故函數(shù)的最大值為.
(2)由題意得:有且只有一個根,
令,則
故在上單調(diào)遞減,上單調(diào)遞增,上單調(diào)遞減,
所以,
因為在單調(diào)遞減,且函數(shù)值恒為正,又當時,,
所以當或時,有且只有一個根.
即
(3)設,因為在,單調(diào)遞增,
故原不等式等價于在、,,且恒成立,
所以在、,,且恒成立,
即,在、,且恒成立,
則函數(shù)和都在單調(diào)遞增,
則有,在,恒成立,
當恒成立時,因為在單調(diào)遞減,
所以的最大值為,所以;
當恒成立時,因為在單調(diào)遞減,在單調(diào)遞增,
所以的最小值為,所以,
綜上:.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex-m(x+1)+1(m∈R).
(1)若函數(shù)f(x)的極小值為1,求實數(shù)m的值;
(2)當x≥0時,不等式恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=4x的焦點為F,過點F且斜率為1的直線與拋物線C交于A、B兩點,若在以線段AB為直徑的圓上存在兩點M、N,在直線:x+y+a=0上存在一點Q,使得∠MQN=90°,則實數(shù)a的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點在拋物線: 上,直線: 與拋物線交于, 兩點,且直線, 的斜率之和為-1.
(1)求和的值;
(2)若,設直線與軸交于點,延長與拋物線交于點,拋物線在點處的切線為,記直線, 與軸圍成的三角形面積為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4一4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,曲線的參數(shù)方程為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線 是圓心的極坐標為()且經(jīng)過極點的圓
(1)求曲線C1的極坐標方程和C2的普通方程;
(2)已知射線分別與曲線C1,C2交于點A,B(點B異于坐標原點O),求線段AB的長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,AB=1,AD,且∠BAD=45°,以BD為折線,把△ABD折起,使AB⊥DC,連接AC,得到三棱錐A﹣BCD.
(1)求證:平面ABD⊥平面BCD;
(2)求二面角B﹣AC﹣D的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知銳角△ABC中,角A,B,C的對邊分別為a,b,c,b+c=10,a=,5bsinAcosC+5csinAcosB=3a.
(1)求A的余弦值;
(2)求b和c.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正實數(shù)列a1,a2,…滿足對于每個正整數(shù)k,均有,證明:
(Ⅰ)a1+a2≥2;
(Ⅱ)對于每個正整數(shù)n≥2,均有a1+a2+…+an≥n.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com