在中,角
、
、
所對應(yīng)的邊為
、
、
.
(1)若,求
的值;
(2)若,且
的面積
,求
的值.
(1);(2)
.
【解析】
試題分析:(1)在等式中利用差角公式化簡求出
的值,從而求出角
的值;(2)解法1是先求出
的值,借助三角形的面積公式得出
與
之間的等量關(guān)系,再利用余弦定理最終得到
與
的等量關(guān)系,最后利用正弦定理求出
的值;解法2是是先求出
的值,借助三角形的面積公式得出
與
之間的等量關(guān)系,再利用余弦定理最終得到
與
的等量關(guān)系,通過觀察三者之間的等量關(guān)系發(fā)現(xiàn)
、
、
三者滿足勾股定理,最后在直角三角形中求出
的值;解法3是先求出
的值,借助三角形的面積公式得出
與
之間的等量關(guān)系,再利用余弦定理最終得到
與
的等量關(guān)系,最后利用三角形的面積公式求出
的值;解法4是先求出
的值,借助三角形的面積公式得出
與
之間的等量關(guān)系,從而得出
與
的等量關(guān)系,并利用
得出
和
的值,最后利用
求出
的值.
試題解析:(1)由,得
,
,
,
,
,
;
(2)解法1:,
,
,
由,得
,
由余弦定理得:,
,
由正弦定理得:,即
,
.
解法2:,
,
,
由得
,
由余弦定理得:,
,
,
是直角三角形,角
為直角,
;
解法3:,
,
,
由得
由余弦定理得:,
,
又,得
,
;
解法4:,
,
,
由得
,
由正弦定理得:,則
,
,
,
整理得,代入
,得
,
由知
,
.
考點(diǎn):1.兩角差的余弦公式;2.正弦定理;3.余弦定理;4.三角形的面積公式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆福建省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
在中,角
、
、
所對應(yīng)的邊分別為
、
、
,且滿足
.
(I)求角的值;
(Ⅱ)若,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
在中,角
、
、
所對應(yīng)的邊分別為
、
、
,若
,角
成等差數(shù)列,則角
的值是_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江瑞安中學(xué)高一下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
在中,角
、
、
所對應(yīng)的邊分別為
,
,
(1)求的值;
(2)若,求邊長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省杭州市求是高復(fù)高三11月月考文科數(shù)學(xué) 題型:解答題
(本題滿分14分)
在中,角
、
、
所對應(yīng)的邊分別為
、
、
,且滿足
(1)若,求實(shí)數(shù)
的值。
(2)若,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com