【題目】在四棱錐中, 為正三角形,平面平面 , , .

(Ⅰ)求證:平面平面;

(Ⅱ)求三棱錐的體積;

(Ⅲ)在棱上是否存在點,使得平面?若存在,請確定點的位置并證明;若不存在,說明理由.

【答案】(1)證明見解析;(2);(3)存在,證明見解析.

【解析】試題分析:(Ⅰ)先證明,再根據(jù)面面垂直的性質(zhì)定理可得平面,再利用面面垂直的判定定理可得結(jié)論;(Ⅱ)先根據(jù)面面垂直的性質(zhì)定理可得平面,再根據(jù)棱錐的體積公式可得結(jié)果;(Ⅲ) 的中點時, 平面,根先證明平面平面,從而可得結(jié)果.

試題解析:(Ⅰ)因為 ,

所以.

因為平面平面,平面平面

所以平面.

因為平面,

所以平面平面.

(Ⅱ)取的中點,連結(jié).

因為為正三角形,

所以.

因為平面平面,

平面平面 ,

所以平面,

所以為三棱錐的高.

因為為正三角形,

所以.

所以 .

(Ⅲ)在棱上存在點,當(dāng)的中點時, 平面.

分別取的中點,連結(jié).

所以. 因為, ,

所以.

所以四邊形為平行四邊形.

所以.

因為,

所以平面平面.

因為平面,

所以平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則方程 為正實數(shù))的實數(shù)根最多有_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 上頂點為右焦點為,過右頂點作直線且與軸交于點,又在直線和橢圓上分別取點和點,滿足為坐標(biāo)原點),連接.

1)求的值,并證明直線與圓相切;

(2)判斷直線與圓是否相切?若相切,請證明;若不相切,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Mx2+y-22=1,Qx軸上的動點,QA,QB分別切圓MA,B兩點。

1)若Q1,0),求切線QAQB的方程;

2)求四邊形QAMB面積的最小值;

3)若|AB|=,求直線MQ的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,已知⊥平面, , 的中點

(1)求證: ;

(2)若的中點,點在直線上,且,

求證:直線//平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年一交警統(tǒng)計了某段路過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):

車速

事故次數(shù)

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達(dá)到時,可能發(fā)生的交通事故次數(shù).

(參考數(shù)據(jù):

[參考公式:]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】”是“對任意的正數(shù), ”的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

【答案】A

【解析】分析:根據(jù)基本不等式,我們可以判斷出”?“對任意的正數(shù)x,2x+≥1”對任意的正數(shù)x,2x+≥1”?“a=

真假,進而根據(jù)充要條件的定義,即可得到結(jié)論.

解答:解:當(dāng)“a=時,由基本不等式可得:

對任意的正數(shù)x,2x+≥1”一定成立,

“a=”?“對任意的正數(shù)x,2x+≥1”為真命題;

對任意的正數(shù)x,2x+≥1時,可得“a≥

對任意的正數(shù)x2x+≥1”?“a=為假命題;

“a=對任意的正數(shù)x,2x+≥1充分不必要條件

故選A

型】單選題
結(jié)束】
9

【題目】如圖是一幾何體的平面展開圖,其中為正方形, , 分別為, 的中點,在此幾何體中,給出下面四個結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面

其中一定正確的選項是( )

A. ①③ B. ②③ C. ②③④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

中,內(nèi)角對邊的邊長分別是,已知

的面積等于,求;

,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)是奇函數(shù),求實數(shù)的值;

(2)在(1)的條件下,判斷函數(shù)與函數(shù)的圖象公共點個數(shù),并說明理由;

(3)當(dāng)時,函數(shù)的圖象始終在函數(shù)的圖象上方,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案