(2012•商丘二模)函數(shù)f(x)=x3-(
1
2
)
x-2
 
的零點所在區(qū)間為( 。
分析:根據(jù)函數(shù)零點的判定定理,把所給的區(qū)間的端點代入求出函數(shù)值,找出兩個端點對應的函數(shù)值符號相反的區(qū)間,得到結(jié)果.
解答:解:∵f(-1)=-9,f(0)=-4,f(1)=-1,f(2)=7,
∴f(1)f(2)<0,
∴函數(shù)的零點所在的區(qū)間是(1,2)
故選C.
點評:本題考查函數(shù)零點的判定定理,本題解題的關鍵是求出對應區(qū)間的端點的函數(shù)值,進行判斷,本題是一個基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•商丘二模)已知
x2
a2
+
y2
b2
=1
(a>b>0),M,N是橢圓的左、右頂點,P是橢圓上任意一點,且直線PM、PN的斜率分別為k1,k2(k1k2≠0),若|k1|+|k2|的最小值為1,則橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•商丘二模)已知復數(shù)z=
1+2i
3-i
(i是虛數(shù)單位),則復數(shù)z的虛部是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•商丘二模)如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D、E分別是AA1、CB1的中點,DE⊥面CBB1
(Ⅰ)證明:DE∥面ABC;
(Ⅱ)若BB1=BC,求CA1與面BB1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•商丘二模)已知函數(shù)f(x)=ex+2x2-3x.
(Ⅰ)求曲線y=f(x)在點(1,f (1))處的切線方程;
(Ⅱ)當x≥1時,若關于x的不等式f(x)≥
52
x2+(a-3)x+1恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案