分析 (1)利用f(x)在x=1處有極值,確定a的值,利用導(dǎo)數(shù)大于0,結(jié)合函數(shù)的定義域,即可得到f(x)的單調(diào)遞增區(qū)間;
(2)分類討論,確定函數(shù)f(x)在區(qū)間(0,e]上的單調(diào)性,從而可得函數(shù)的最小值,利用最小值是3,建立方程,即可求得結(jié)論.
解答 解:(1)∵f(x)在x=1處有極值,∴f′(1)=0,
∵f′(x)=a-$\frac{1}{x}$,∴a-1=0,∴a=1,
∴f′(x)=1-$\frac{1}{x}$,令f′(x)>0,可得x<0或x>1;
∵x>0,∴x>1
∴f(x)的單調(diào)遞增區(qū)間為(1,+∞);
(2)假設(shè)存在實數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,
①當(dāng)a≤0時,∵x∈(0,e],∴f′(x)<0,∴f(x)在區(qū)間(0,e]上單調(diào)遞減,
∴f(x)min=f(e)=ae-1=3,∴a=$\frac{4}{e}$(舍去);
②當(dāng)0<$\frac{1}{a}$<e時,f(x)在區(qū)間(0,$\frac{1}{a}$)上單調(diào)遞減,在($\frac{1}{a}$,e]上單調(diào)遞增
∴f(x)min=f($\frac{1}{a}$)=1+lna=3,∴a=e2,滿足條件;
③當(dāng)$\frac{1}{a}$≥e時,∵x∈(0,e],∴f′(x)<0,∴f(x)在區(qū)間(0,e]上單調(diào)遞減
∴f(x)min=f(e)=ae-1=3,∴a=$\frac{4}{e}$(舍去),
綜上所述,存在實數(shù)a=e2,使f(x)在區(qū)間(0,e]的最小值是3.
點(diǎn)評 本題考查導(dǎo)數(shù)知識的運(yùn)用,考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的極值與單調(diào)性,考查函數(shù)的最值,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
應(yīng)納銳收入(元) | 稅率(%) |
不超過1500元 | 3 |
超過1500元至4500元 | 10 |
超過4500元至9000元 | 20 |
超過9000元至35000元 | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-4)∪[2,+∞) | B. | (-4,0)∪(0,1) | C. | (-4,0)∪(0,1) | D. | [-4,0)∪(0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1] | B. | $(-∞,-\frac{7}{2}]$ | C. | $[-\frac{7}{2},-1)$ | D. | $[-\frac{7}{2},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | (-∞,1) | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com