【題目】已知函數(shù).

(1)若,求曲線在點(diǎn)處的切線的方程;

(2)若不等式 對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1);(2).

【解析】

試題分析:(1)求導(dǎo)得,利用導(dǎo)數(shù)求得斜率為,而切點(diǎn),由此求得切線方程,分別令,求得,代入后利用二次函數(shù)求最值的方法求得當(dāng)時(shí)有最小值,由此求得切線方程為;2)構(gòu)造函數(shù),利用的導(dǎo)數(shù),討論函數(shù)的單調(diào)區(qū)間與最值,由此求得實(shí)數(shù)的取值范圍.

試題解析:

(1),切線斜率,切點(diǎn)為,所以切線的方程為,分別令 ,得切線與軸,軸的交點(diǎn)坐標(biāo)為,當(dāng),

時(shí), 取得最小值,但,所以當(dāng)時(shí),取得最小值.此時(shí),切線的方程為,即.

(2)設(shè),則當(dāng)時(shí),因?yàn)?/span>上單調(diào)遞增,不符合題意.

當(dāng),即時(shí),上恒成立,

上單調(diào)遞減,于是滿足題意.當(dāng),即時(shí),由,可得,由,可得,上單調(diào)遞增,在上單調(diào)遞減,,不符合題意.綜上所述,實(shí)數(shù)的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣2,數(shù)列{bn}滿足b1=1,且bn+1=bn+2.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn= ,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式為an=25n , 數(shù)列{bn}的通項(xiàng)公式為bn=n+k,設(shè)cn= 若在數(shù)列{cn}中,c5≤cn對(duì)任意n∈N*恒成立,則實(shí)數(shù)k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二(4)班有男生28人,女生21人,用分層抽樣的方法從全班學(xué)生中抽取一個(gè)調(diào)查小組,調(diào)查該校學(xué)生對(duì)2013年1月1日起執(zhí)行的新交規(guī)的知曉情況,已知某男生被抽中的概率為 ,則抽取的女生人數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a1+a3=10,d=3.令bn= ,數(shù)列{bn}的前n項(xiàng)和為Tn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Tn
(3)是否存在正整數(shù)m,n(1<m<n),使得T1 , Tm , Tn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在等差數(shù)列中, 為其前項(xiàng)和, ,;等比數(shù)列的前項(xiàng)和.

(I)求數(shù)列 的通項(xiàng)公式;

(II)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;

(Ⅱ) 證明: 當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>.

(1)當(dāng)時(shí),求函數(shù)的值域;

(2)若函數(shù)在定義域上是減函數(shù),求的取值范圍;

3)求函數(shù)在定義域上的最大值及最小值,并求出函數(shù)取最值時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程為:x2+y2﹣2x﹣4y+m=0.
(1)求m的取值范圍;
(2)若圓C與直線3x+4y﹣6=0交于M、N兩點(diǎn),且|MN|=2 ,求m的值;
(3)設(shè)直線x﹣y﹣1=0與圓C交于A、B兩點(diǎn),是否存在實(shí)數(shù)m,使得以AB為直徑的圓過原點(diǎn),若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案