(2009•上海)已知對(duì)于任意實(shí)數(shù)x,函數(shù)f(x)滿足f(-x)=f(x).若方程f(x)=0有2009個(gè)實(shí)數(shù)解,則這2009個(gè)實(shí)數(shù)解之和為
0
0
分析:不妨設(shè)方程f(x)=0的實(shí)數(shù)解為x1,x2,…,x2009,且x1<x2<…<x2009,由f(-x)=f(x),可知實(shí)數(shù)解關(guān)于原點(diǎn)對(duì)稱,由此可求得答案.
解答:解:設(shè)方程f(x)=0的實(shí)數(shù)解為x1,x2,…,x2009,
不妨設(shè)x1<x2<…<x2009
又f(-x)=f(x),
∴如存在x0使f(x0)=0,則f(-x0)=0,
∴x1+x2009=0,x2+x2008=0,…,x1004+x1006=0,x1005=0,
∴x1+x2+…+x2009=0.
故答案為:0.
點(diǎn)評(píng):本題考查偶函數(shù)的性質(zhì)、方程的解,考查學(xué)生的觀察能力,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)定義區(qū)間(m,n),[m,n],(m,n],[m,n)的長(zhǎng)度均為n-m,其中n>m.
(1)若關(guān)于x的不等式2ax2-12x-3>0的解集構(gòu)成的區(qū)間的長(zhǎng)度為
6
,求實(shí)數(shù)a的值;
(2)已知關(guān)于x的不等式sinxcosx+
3
cos2x+b>0
,x∈[0,π]的解集構(gòu)成的各區(qū)間的長(zhǎng)度和超過(guò)
π
3
,求實(shí)數(shù)b的取值范圍;
(3)已知關(guān)于x的不等式組
7
x+1
>1 
log2x+log2(tx+3t)<2
的解集構(gòu)成的各區(qū)間長(zhǎng)度和為6,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)已知點(diǎn)列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點(diǎn),點(diǎn)列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對(duì)任意的n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.
(1)證明:數(shù)列{yn}是等差數(shù)列;
(2)求證:對(duì)任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式;
(3)對(duì)上述等腰三角形AnBnAn+1添加適當(dāng)條件,提出一個(gè)問(wèn)題,并做出解答.(根據(jù)所提問(wèn)題及解答的完整程度,分檔次給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)對(duì)定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)稱為G函數(shù).
①對(duì)任意的x∈[0,1],總f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2成立.
已知函數(shù)g(x)=x2與h(x)=a&•2x-1是定義在[0,1]上的函數(shù).
(1)試問(wèn)函數(shù)g(x)是否為G函數(shù)?并說(shuō)明理由;
(2)若函數(shù)h(x)是G函數(shù),求實(shí)數(shù)a的值;
(3)在(2)的條件下,討論方程g(2x-1)+h(x)=m(m∈R)解的個(gè)數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•上海模擬)已知無(wú)窮等比數(shù)列{an}的前n項(xiàng)和為Sn,各項(xiàng)的和為S,且
lim
n→∞
(Sn-2S)=1
,則其首項(xiàng)a1的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案