已知定義在R上的奇函數(shù)滿足f(x+2)=-f(x),當0<x<1時,f(x)=x,數(shù)學公式=


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:由題設條件f(x+2)=-f(x)可得出函數(shù)的周期是4,再結合函數(shù)是奇函數(shù)的性質將函數(shù)值,用(0,1)上的函數(shù)值表示,再由0<x<1時,f(x)=x,求出函數(shù)值,然后對比四個選項得出正確選項.
解答:由題意定義在R上的奇函數(shù)滿足f(x+2)=-f(x),故有f(x+2)=-f(x)=f(x-2),故函數(shù)的周期是4
=f(-0.5)=-f(0.5)
又0<x<1時,f(x)=x,
=-f(0.5)=-
故選B
點評:本題考查函數(shù)的周期性,正確解答本題,關鍵是根據(jù)題設中的恒等式f(x+2)=-f(x)求出函數(shù)的周期,再綜合利用函數(shù)的性質求出函數(shù)值,此處變形對觀察能力要求較高,解題時要注意觀察,確定好轉化方向.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當0≤θ≤
π2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x).當x<0時,f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問:是否存在實數(shù)a,b(a≠b),使f(x)在x∈[a,b]時,函數(shù)值的集合為[
1
b
1
a
]
?若存在,求出a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:大連二十三中學2011學年度高二年級期末測試試卷數(shù)學(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆浙江省高二下學期期末考試理科數(shù)學試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當0≤θ≤數(shù)學公式時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案