對(duì)定義域?yàn)?/span>的函數(shù),若存在距離為的兩條平行直線,使得當(dāng)時(shí),恒成立,則稱函數(shù)有一個(gè)寬度為的通道.有下列函數(shù);;.其中在上通道寬度為的函數(shù)是( 。

A.①③ B.②③ C.②④ D.①④

 

【答案】

A

【解析】

試題分析:對(duì)于①中的函數(shù),當(dāng)時(shí),,即,取直線即可,故函數(shù)上通道寬度為的函數(shù);對(duì)于②中的函數(shù),當(dāng)

時(shí),結(jié)合圖象可知,不存在距離為的兩條平行直線,使得當(dāng)時(shí),恒成立,故②中的函數(shù)不是上通道寬度為的函數(shù);對(duì)于③中的函數(shù),當(dāng)時(shí),函數(shù)的圖象表示的是雙曲線在第一象限內(nèi)的圖象,其漸近線方程為,可取直線和直線,則有

上恒成立,故函數(shù)上通道寬度為的函數(shù);對(duì)于④中的函數(shù)

,函數(shù)上增長(zhǎng)速度較一次函數(shù)快,結(jié)合圖象可知,不存在距離為的兩條平行直線,使得當(dāng)時(shí),恒成立,故④中的函數(shù)不是上通道寬度為的函數(shù).故選A.

考點(diǎn):1.新定義;2.函數(shù)的圖象

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆上海市盧灣區(qū)高考模擬考試數(shù)學(xué)試卷(理科) 題型:解答題

對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/94/5/1kxho2.gif" style="vertical-align:middle;" />的函數(shù),若有常數(shù)M,使得對(duì)任意的,存在唯一的滿足等式,則稱M為函數(shù)f (x)的“均值”.
(1)判斷1是否為函數(shù)的“均值”,請(qǐng)說(shuō)明理由;
(2)若函數(shù)為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫(xiě)出你的結(jié)論(不必證明).
說(shuō)明:對(duì)于(3),將根據(jù)結(jié)論的完整性與一般性程度給予不同的評(píng)分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東珠海高三上學(xué)期期末學(xué)生學(xué)業(yè)質(zhì)量監(jiān)測(cè)理數(shù)學(xué)卷(解析版) 題型:選擇題

對(duì)定義域?yàn)?/span>的函數(shù),若存在距離為的兩條平行直線,使得當(dāng)時(shí),恒成立,則稱函數(shù)有一個(gè)寬度為的通道.有下列函數(shù);;.其中在上通道寬度為的函數(shù)是( 。

A.①③ B.②③ C.②④ D.①④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年上海市盧灣區(qū)高考模擬考試數(shù)學(xué)試卷(理科) 題型:解答題

對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052209445829682376/SYS201205220947168125476025_ST.files/image001.png">的函數(shù),若有常數(shù)M,使得對(duì)任意的,存在唯一的滿足等式,則稱M為函數(shù)f (x)的“均值”.

(1)判斷1是否為函數(shù)的“均值”,請(qǐng)說(shuō)明理由;

(2)若函數(shù)為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;

(3)若函數(shù)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫(xiě)出你的結(jié)論(不必證明).

說(shuō)明:對(duì)于(3),將根據(jù)結(jié)論的完整性與一般性程度給予不同的評(píng)分

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

對(duì)于定義域?yàn)?sub>的函數(shù),若有常數(shù)M,使得對(duì)任意的,存在唯一的滿足等式,則稱M為函數(shù)f (x)的“均值”.

(1)判斷1是否為函數(shù)的“均值”,請(qǐng)說(shuō)明理由;

(2)若函數(shù)為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;

(3)若函數(shù)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫(xiě)出你的結(jié)論(不必證明).

說(shuō)明:對(duì)于(3),將根據(jù)結(jié)論的完整性與一般性程度給予不同的評(píng)分

查看答案和解析>>

同步練習(xí)冊(cè)答案