(本小題滿分12分)

已知點(diǎn)R(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上 ,且滿足,.

(Ⅰ)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;

(Ⅱ)設(shè)為軌跡C上兩點(diǎn),且,N(1,0),求實(shí)數(shù),使,且.

 

【答案】

(Ⅰ);(Ⅱ)。

【解析】

試題分析:(Ⅰ)設(shè)點(diǎn)M(x,y),由得P(0,),Q().

得(3,)·(,)=0,即

又點(diǎn)Q在x軸的正半軸上,故點(diǎn)M的軌跡C的方程是.……6分

(Ⅱ)解法一:由題意可知N為拋物線C:y2=4x的焦點(diǎn),且A、B為過(guò)焦點(diǎn)N的直線與拋物線C的兩個(gè)交點(diǎn)。

當(dāng)直線AB斜率不存在時(shí),得A(1,2),B(1,-2),|AB|,不合題意;……7分

當(dāng)直線AB斜率存在且不為0時(shí),設(shè),代入

則|AB|,解得          ………………10分

代入原方程得,由于,所以,

,得 .             …………………12分

解法二:由題設(shè)條件得

  

由(6)、(7)解得,又,故

考點(diǎn):直線與拋物線的綜合應(yīng)用;向量在幾何中的應(yīng)用;軌跡方程的求法。

點(diǎn)評(píng):求曲線的軌跡方程是解析幾何的基本問(wèn)題之一。本題主要考查利用“相關(guān)點(diǎn)法”求曲線的軌跡方程。相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0y0,然后代入點(diǎn)P的坐標(biāo)(x0y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類(lèi),這三類(lèi)工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類(lèi)別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案