【題目】n2個數(shù)排成nn列的一個數(shù)陣,如圖:該數(shù)陣第一列的n個數(shù)從上到下構(gòu)成以m為公差的等差數(shù)列,每一行的n個數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列(其中m0.已知a112,a13a61+1,記這n2個數(shù)的和為S.下列結(jié)論正確的有(

A.m3B.

C.D.

【答案】ACD

【解析】

根據(jù)第一列成等差,第一行成等比可求出,列式即可求出,從而求出通項,

再按照分組求和法,每一行求和可得S,由此可以判斷各選項的真假.

a112,a13a61+1,∴2m22+5m+1,解得m3m(舍去),

aijai13j1[2+i1)×m]3j1=(3i13j1

a6717×36,

S(a11+a12+a13+……+a1n)+(a21+a22+a23+……+a2n)+……+(an1an2an3……ann)

3n1

n3n+1)(3n1

故選:ACD.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知在正四棱錐中(底面為正方形,頂點在底面上的射影為底面中心的四棱錐),,,側(cè)棱與底面所成角為,側(cè)面與底面所成角為,側(cè)面等腰三角形的底角為,相鄰兩側(cè)面的二面角為,則下列說法正確的有(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡(luò)外賣也開始成為不少人日常生活中不可或缺的一部分市某調(diào)查機構(gòu)針對該市市場占有率最高的兩種網(wǎng)絡(luò)外賣企業(yè)以下簡稱外賣A、外賣的服務(wù)質(zhì)量進行了調(diào)查,從使用過這兩種外賣服務(wù)的市民中隨機抽取了1000人,每人分別對這兩家外賣企業(yè)評分,滿分均為100分,并將分數(shù)分成5組,得到以下頻數(shù)分布表:

分數(shù)

人數(shù)

種類

外賣A

50

150

100

400

300

外賣B

100

100

300

200

300

表中得分越高,說明市民對網(wǎng)絡(luò)外賣服務(wù)越滿意若得分不低于60分,則表明該市民對網(wǎng)絡(luò)外賣服務(wù)質(zhì)量評價較高現(xiàn)將分數(shù)按“服務(wù)質(zhì)量指標”劃分成以下四個檔次:

分數(shù)

服務(wù)質(zhì)量指標

0

1

2

3

視頻率為概率,解決下列問題:

從該市使用過外賣A的市民中任選5人,記對外賣A服務(wù)質(zhì)量評價較高的人數(shù)為X,求X的數(shù)學期望.

從參與調(diào)查的市民中隨機抽取1人,試求其評分中外賣A的“服務(wù)質(zhì)量指標”與外賣B的“服務(wù)質(zhì)量指標”的差的絕對值等于2的概率;

M市工作的小王決定從外賣A、外賣B這兩種網(wǎng)絡(luò)外賣中選擇一種長期使用,如果從這兩種外賣的“服務(wù)質(zhì)量指標”的期望角度看,他選擇哪種外賣更合適?試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線不與坐標軸垂直,且與拋物線有且只有一個公共點.

1)當點的坐標為時,求直線的方程;

2)設(shè)直線軸的交點為,過點且與直線垂直的直線交拋物線兩點.時,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達圖.圖中點表示十月的平均最高氣溫約為,點表示四月的平均最低氣溫約為.下面敘述不正確的是(

A.各月的平均最高氣溫都在以上

B.六月的平均溫差比九月的平均溫差大

C.七月和八月的平均最低氣溫基本相同

D.平均最低氣溫高于的月份有5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的偶函數(shù)fx)滿足fe+x)=fex),且f0)=0,當x∈(0,e]時,fx)=lnx已知方程在區(qū)間[e,3e]上所有的實數(shù)根之和為3ea,將函數(shù)的圖象向右平移a個單位長度,得到函數(shù)hx)的圖象,,則h7)=_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,證明的圖象與軸相切;

(2)當時,證明存在兩個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)

討論的單調(diào)區(qū)間;

時,上的最小值為,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為提高城市居民生活幸福感,某城市公交公司大力確保公交車的準點率,減少居民乘車候車時間為此,該公司對某站臺乘客的候車時間進行統(tǒng)計乘客候車時間受公交車準點率、交通擁堵情況、節(jié)假日人流量增大等情況影響在公交車準點率正常、交通擁堵情況正常、非節(jié)假日的情況下,乘客候車時間隨機變量滿足正態(tài)分布在公交車準點率正常、交通擁堵情況正常、非節(jié)假日的情況下,調(diào)查了大量乘客的候車時間,經(jīng)過統(tǒng)計得到如圖頻率分布直方圖.

1)在直方圖各組中,以該組區(qū)間的中點值代表該組中的各個值,試估計的值;

2)在統(tǒng)計學中,發(fā)生概率低于千分之三的事件叫小概率事件,一般認為,在正常情況下,一次試驗中,小概率事件是不能發(fā)生的在交通擁堵情況正常、非節(jié)假日的某天,隨機調(diào)查了該站的10名乘客的候車時間,發(fā)現(xiàn)其中有3名乘客候車時間超過15分鐘,試判斷該天公交車準點率是否正常,說明理由.

(參考數(shù)據(jù):,,,

查看答案和解析>>

同步練習冊答案