2
x
+x)(1-
x
6的展開式中x的系數(shù)是
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:求出(1-
x
6 的展開式,可得(
2
x
+x)(1-
x
6的展開式中x的系數(shù).
解答: 解:∵(1-
x
6 =
C
0
6
(-
x
)
0
+
C
1
6
(-
x
)
1
+…+
C
6
6
(-
x
)
6
,
∴(
2
x
+x)(1-
x
6的展開式中x的系數(shù)是2×
C
4
6
+1=31,
故答案為:31.
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面命題正確的序號是
 

①一位母親記錄了兒子3~9歲的身高,由此建立的身高與年齡的回歸模型為
y
=7.19x+73.93,用這個模型預(yù)測這個孩子10歲時的身高,則身高一定是145.83cm
②設(shè)有一個回歸方程為
y
=2-1.5則變量x增加一個單位時,y平均減少1.5個單位③結(jié)構(gòu)圖反應(yīng)事物的邏輯關(guān)系而不是流程圖中的先后順序關(guān)系.
④若x∈(-∞,1),則函數(shù)y=
x2-2x+2
2x-2
有最小值1
⑤對一切滿足|x|+|y|≤1的實(shí)數(shù)x,y,不等式|2x-3y+
3
2
|+|y-1|+|2y-x-3|≤a恒成立,則實(shí)數(shù)a的最小值為
23
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-4x+1的零點(diǎn)有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=3|x|(x∈[a,b])的值域?yàn)閇1,9],則b-a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα,tanβ是方程3x2+5x-2=0的兩根,則tan(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是拋物線y2=4x的焦點(diǎn),A,B在拋物線上,M(3,2)為線段AB的中點(diǎn),則△OAB的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)統(tǒng)計(jì),用于數(shù)學(xué)學(xué)習(xí)的時間(單位:小時)與成績(單位:分)近似于線性相關(guān)關(guān)系.對某小組學(xué)生每周用于數(shù)學(xué)的學(xué)習(xí)時間x與數(shù)學(xué)成績y進(jìn)行數(shù)據(jù)收集如下:
x 15 16 18 19 22
y 102 98 115 115 120
由表中樣本數(shù)據(jù)求得回歸方程為y=bx+a,則點(diǎn)(a,b)與直線x+18y=100的位置關(guān)系是( 。
A、a+18b<100
B、a+18b>100
C、a+18b=100
D、a+18b與100的大小無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有男同學(xué)40人,女同學(xué)30人,用分層抽樣的方法從全班抽同學(xué)中抽出一個容量為7的樣本,則應(yīng)分別抽。ā 。
A、男同學(xué)4人;女同學(xué)3人
B、男同學(xué)3人;女同學(xué)4人
C、男同學(xué)2人;女同學(xué)5人
D、男同學(xué)5人;女同學(xué)2人

查看答案和解析>>

同步練習(xí)冊答案