函數(shù)f(x)=
x
1-x
(0<x<1)的反函數(shù)為f-1(x),數(shù)列{an}和{bn}滿足:a1=
1
2
,an+1=f-1(an),函數(shù)y=f-1(x),的圖象在點(diǎn)(n,f-1(n))(n∈N*)處的切線在y軸上的截距為bn
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{
bn
a
2
n
-
λ
an
}的項中僅
b5
a
2
5
-
λ
a5
最小,求λ的取值范圍;
(3)令函數(shù)g(x)=[f-1(x)+f(x)]-
1-x2
1+x2
,0<x<1.?dāng)?shù)列{xn}滿足:x1=
1
2
,0<xn<1且xn+1=g(xn)(其中n∈N*).證明:
(x2-x1)2
x1x2
+
(x3-x2)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
5
16
分析:(1)令y=
x
1-x
,解得x=
y
1+y
;由0<x<1,解得y>0.所以函數(shù)f(x)的反函數(shù)f-1(x)=
x
1+x
(x>0)
.由an+1=f-1(an)=
an
1+an
,得
1
an+1
-
1
an
=1
由此能求出數(shù)列{an}的通項公式.
(2)由f-1(x)=
x
1+x
(x>0)
,知y=f-1(x)在點(diǎn)(n,f-1(n))處的切線方程為y-
n
n+1
=
1
(1+n)2
(x-n)
,令x=0得bn=
n2
(1+n)2
.由此能求出λ的取值范圍.
(3)g(x)=[f-1(x)+f(x)]•
1-x2
1+x2
=[
x
1+x
+
x
1-x
]•
1-x2
1+x2
=
2x
1+x2
,x∈(0,1)
.所以xn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
,由0<xn<1,知xn+1>xn1>xn+1xn>…x2
1
2
.由此入手能夠證明:
(x2-x1)2
x1x2
+
(x3-x2)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
5
16
解答:解:(1)令y=
x
1-x
,解得x=
y
1+y
;由0<x<1,解得y>0.
∴函數(shù)f(x)的反函數(shù)f-1(x)=
x
1+x
(x>0)

an+1=f-1(an)=
an
1+an
,得
1
an+1
-
1
an
=1
.∴{
1
an
}
是以2為首項,1為公差的等差數(shù)列,故an=
1
n+1

(2)∵f-1(x)=
x
1+x
(x>0)
,∴[f-1(x)]=
1
(1+x)2
,∴y=f-1(x)在點(diǎn)(n,f-1(n))處的切線方程為y-
n
n+1
=
1
(1+n)2
(x-n)
,令x=0得bn=
n2
(1+n)2

bn
a
2
n
-
λ
an
=n2-λ(n+1)=(n-
λ
2
)2-λ-
λ2
4

∵僅當(dāng)n=5時取得最小值,∴4.5<
λ
2
<5.5

∴λ的取值范圍為(9,11).
(3)g(x)=[f-1(x)+f(x)]•
1-x2
1+x2
=[
x
1+x
+
x
1-x
]•
1-x2
1+x2
=
2x
1+x2
,x∈(0,1)

所以xn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
,又因0<xn<1,則xn+1>xn.顯然1>xn+1xn>…x2
1
2
xn+1-xn=xn(1-xn)•
1+xn
x
2
n
+1
1
4
1
xn+1+
2
xn+1
-2
1
4
1
2
2
-2
=
2
+1
8

(xn+1-xn)2
xnxn+1
=
xn+1-xn
xnxn+1
(xn+1-xn)=(xn+1-xn)(
1
xn
-
1
xn+1
)<
2
+1
8
(
1
xn
-
1
xn+1
)

(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
2
+1
8
[(
1
x1
-
1
x2
)+(
1
x2
-
1
x3
)+…+(
1
xn
-
1
xn+1
)]
=
2
+1
8
(
1
x1
-
1
xn+1
)=
2
+1
8
(2-
1
xn+1
)
1
2
xn+1<1

1<
1
xn+1
<2
,∴0<2-
1
xn+1
<1
(x1-x2)2
x1x2
+
(x2-x3)2
x2x3
+…+
(xn+1-xn)2
xnxn+1
=
2
+1
8
(2-
1
xn+1
)<
2
+1
8
3
2
+1
8
=
5
16
點(diǎn)評:本題考查數(shù)列和函數(shù)的綜合運(yùn)用,解題時要認(rèn)真審題,注意導(dǎo)數(shù)的合理運(yùn)用,恰當(dāng)?shù)剡M(jìn)行等價轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x1+|x|
(x∈R)時,則下列結(jié)論正確的是
(1)(2)(3)
(1)(2)(3)

(1)?x∈R,等式f(-x)+f(x)=0恒成立
(2)?m∈(0,1),使得方程|f(x)|=m有兩個不等實(shí)數(shù)根
(3)?x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2
(4)?k∈(1,+∞),使得函數(shù)g(x)=f(x)-kx在R上有三個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在研究函數(shù) f (x)=
x1+|x|
(x∈R) 時,分別給出下面幾個結(jié)論:
①等式f(-x)+f(x)=0在x∈R時恒成立;
②函數(shù) f (x) 的值域為 (-1,1);
③若x1≠x2,則一定有f (x1)≠f (x2);
④方程f(x)-x=0有三個實(shí)數(shù)根.
其中正確結(jié)論的序號有
①②③
①②③
.(請將你認(rèn)為正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f (x)=
x
1-2x
的反函數(shù)為f -1(x),若數(shù)列{an}滿足an+1=f -1(an)(n∈N+)且a1=-
1
2007

(1)求{an}的通項公式;
(2)若bn=anan-1,求bn的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍(lán)山縣模擬)已知正項數(shù)列{an}的首項a1=
1
2
,函數(shù)f(x)=
x
1+x
,g(x)=
2x+1
x+2

(1)若正項數(shù)列{an}滿足an+1=f(an)(n∈N*),證明:{
1
an
}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)若正項數(shù)列{an}滿足an+1≤f(an)(n∈N*),數(shù)列{bn}滿足bn=
an
n+1
,證明:b1+b2+…+bn<1;
(3)若正項數(shù)列{an}滿足an+1=g(an),求證:|an+1-an|≤
3
10
•(
3
7
n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x1+x2
的單調(diào)遞增區(qū)間是
(-1,1)
(-1,1)

查看答案和解析>>

同步練習(xí)冊答案