口袋里裝有大小相同的卡片八張,其中三張標(biāo)有數(shù)字1,三張標(biāo)有數(shù)字2,二張標(biāo)有數(shù)字3,第一次從口袋里任里任意抽取一張,放回口袋里后第二次再任意抽取一張,記第一次與第二次取到卡片上數(shù)字之和為
(1)為何值時,其發(fā)生的概率最大?說明理由; 
(2)求隨機變量的期望
18.解
(1)取值為2,3,4,5,6
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
某醫(yī)院有7名醫(yī)生(4男3女), 從7名醫(yī)生中選3人組成醫(yī)療小組下鄉(xiāng)巡診.
(1)設(shè)所選3人中女醫(yī)生的人數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)現(xiàn)已知4名男醫(yī)生中張強已被選中,求3名女醫(yī)生中李莉也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)張師傅駕車從公司開往火車站,途徑4個交通崗,這4個交通崗將公司到火車站分成5個時段,每個時段的駕車時間都是3分鐘,如果遇到紅燈要停留1分鐘。假設(shè)他在各交通崗遇到紅燈是相互獨立的,并且概率都是
(1)求張師傅此行程時間不小于16分鐘的概率;
(2)記張師傅此行程所需時間為Y分鐘,求Y的分布列和均值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

符合下列三個條件之一,某名牌大學(xué)就可錄。
①獲國家高中數(shù)學(xué)聯(lián)賽一等獎(保送錄取,聯(lián)賽一等獎從省高中數(shù)學(xué)競賽優(yōu)勝者中考試選拔);
②自主招生考試通過并且高考分數(shù)達到一本分數(shù)線(只有省高中數(shù)學(xué)競賽優(yōu)勝者才具備自主招生考試資格);
③高考分數(shù)達到該大學(xué)錄取分數(shù)線(該大學(xué)錄取分數(shù)線高于一本分數(shù)線).
某高中一名高二數(shù)學(xué)尖子生準備報考該大學(xué),他計劃:若獲國家高中數(shù)學(xué)聯(lián)賽一等獎,則保送錄取;若未被保送錄取,則再按條件②、條件③的順序依次參加考試.
已知這名同學(xué)獲省高中數(shù)學(xué)競賽優(yōu)勝獎的概率是0.9,通過聯(lián)賽一等獎選拔考試的概率是0.5,通過自主招生考試的概率是0.8,高考分數(shù)達到一本分數(shù)線的概率是0.6,高考分數(shù)達到該大學(xué)錄取分數(shù)線的概率是0.3.
(I)求這名同學(xué)參加考試次數(shù)的分布列及數(shù)學(xué)期望;
(II)求這名同學(xué)被該大學(xué)錄取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人投籃一次命中概率為,共投籃7次。
(1)試問至多有1次命中的概率;
(2)試問出現(xiàn)命中次數(shù)為奇數(shù)的概率與命中次數(shù)為偶數(shù)的概率是否相等?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩名同學(xué)在5次英語口語測試中的成績統(tǒng)計如下面的莖葉圖所示.
(1)現(xiàn)要從中選派一人參加英語口語競賽,從統(tǒng)計學(xué)角度,你認為派哪位學(xué)生參加更合適,請說明理由;
(2)若將頻率視為概率,對學(xué)生甲在今后的三次英語口語競賽成績進行預(yù)測,記這三次成績中高于80分的次數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

( 12分)
甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)甲面試合格的概率為,乙、丙面試合格的概率都是,且面試是否合格互不影響.求:
(1)至少有1人面試合格的概率;
(2)簽約人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)隨機變量,且,則等于
A.0B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分12分)
根據(jù)以往統(tǒng)計資料,某地車主購買甲種保險的概率為0.5,購買乙種保險但不購買甲種保險的概率為0.3,設(shè)各車主購買保險相互獨立。
(Ⅰ)求該地1為車主至少購買甲、乙兩種保險中的1種的概率;
Ⅱ)X表示該地的100為車主中,甲、乙兩種保險都不購買的車主數(shù),求X的期望。

查看答案和解析>>

同步練習(xí)冊答案