焦點(diǎn)坐標(biāo)是(-2,0)、(2,0),且短軸長(zhǎng)為2
6
的橢圓方程是( 。
分析:依題意可z知其焦點(diǎn)在x軸,并求得c=2,b=
6
,從而可得答案.
解答:解:∵橢圓的焦點(diǎn)坐標(biāo)是(-2,0)、(2,0),且短軸長(zhǎng)為2
6
,
∴c=2,b=
6
,
∴a2=b2+c2=6+4=10,
∴橢圓方程是:
x2
10
+
y2
6
=1,
故選C.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的簡(jiǎn)單性質(zhì),理性a,b,c之間的關(guān)系是基礎(chǔ),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、拋物線y2=8x的焦點(diǎn)坐標(biāo)是
(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過點(diǎn)(-2,-
2
)的橢圓的標(biāo)準(zhǔn)方程.
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1(a>b>0).設(shè)斜率為k的直線l交橢圓C于A、B兩點(diǎn),AB的中點(diǎn)為M.證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過原點(diǎn)的定直線上.
(3)利用(2)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡(jiǎn)要寫出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過點(diǎn)( -2 , -
2
 )
的橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1
(a>b>0).設(shè)斜率為k的直線l,交橢圓C于A、B兩點(diǎn),AB的中點(diǎn)為M.證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過原點(diǎn)的定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=-8x的焦點(diǎn)坐標(biāo)是
(-2,0)
(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點(diǎn)坐標(biāo)是(-2,0),(2,0),且虛軸長(zhǎng)為2的雙曲線的方程是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案