已知非零向量
a
b
滿足|
a
+
b
|=|
a
-
b
|
,求證:
a
b
分析:把已知的等式兩邊平方,可得這兩個(gè)非零向量的數(shù)量積等于零,從而得到兩個(gè)非零向量垂直.
解答:證明:∵|
a
+
b
|=|
a
-
b
|?|
a
+
b
|2
=|
a
+
b
|2
?(
a
+
b
)2
=(
a
-
b
)2
?
a
2
+2
a
b
+
b
2
=
a
2
-2
a
b
+
b
2
?
a
b
=0
,
又∵
a
,
b
為非零向量,
a
b
點(diǎn)評(píng):本題考查兩個(gè)向量的數(shù)量積的運(yùn)算,兩個(gè)向量垂直的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
a
、
b
滿足|
a
+
b
|=|
b
|
,
①若
a
、
b
共線,則
a
=-2
b

②若
a
b
不共線,則以|
a
|、|
a
+2
b
|、2|
b
|
為邊長(zhǎng)的三角形為直角三角形;
2|
b
|>|
a
+2
b
|
; ④2|
b
|<|
a
+2
b
|

其中正確的命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鷹潭一模)已知非零向量
a
b
滿足|
a
+
b
|=|
a
-
b
|=
2
3
3
|
a
|,則
a
+
b
a
-
b
的夾角為
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州模擬)已知非零向量
a
,
b
滿足|
a
|=1,|
a
-
b
|=
3
,
a
b
的夾角為120°,則|
b
|=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)已知非零向量
a
b
滿足
a
b
,則函數(shù)f(x)=(
a
x+
b
)2(x∈R)
是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案