【題目】已知函數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在定義域內(nèi)恒有f(x)≤0,求實(shí)數(shù)a的取值范圍;
【答案】(1)見(jiàn)解析(2) [0,2]
【解析】分析:第一問(wèn)對(duì)函數(shù)求導(dǎo),結(jié)合函數(shù)的定義域,對(duì)的范圍進(jìn)行討論,確定出函數(shù)在哪個(gè)區(qū)間上單調(diào)增,在哪個(gè)區(qū)間上單調(diào)減,最后確定出結(jié)果;第二問(wèn)函數(shù)f(x)在定義域內(nèi)恒有f(x)≤0,轉(zhuǎn)化為函數(shù)的最大值小于等于零即可,最后轉(zhuǎn)化為求函數(shù)最值問(wèn)題來(lái)解決.
詳解:(1)
當(dāng)上遞減;
當(dāng)時(shí),令,得(負(fù)根舍去).
當(dāng)得,;令,得,
∴上遞增,在(上遞減
(2) 當(dāng),符合題意.
當(dāng)時(shí),
∴
當(dāng)時(shí),在()上遞減,
且的圖象在()上只有一個(gè)交點(diǎn),設(shè)此交點(diǎn)為(),
則當(dāng)x∈時(shí),,故當(dāng)時(shí),不滿(mǎn)足
綜上,a的取值范圍[0,2]
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函數(shù),且f(1).
(1)求f(x)的解析式;
(2)若關(guān)于x的方程f(1)+f(1﹣3mx﹣2)=0在區(qū)間[0,1]內(nèi)只有一個(gè)解,求m取值集合;
(3)是否存在正整數(shù)n,使不得式f(2x)≥(n﹣1)f(x)對(duì)一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(I)若,求函數(shù)的單調(diào)區(qū)間.
(II)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍.
(III)過(guò)坐標(biāo)原點(diǎn)作曲線(xiàn)的切線(xiàn),求切線(xiàn)的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,傾斜角為的直線(xiàn)的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為 .
(Ⅰ)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn),若點(diǎn)的極坐標(biāo)為,直線(xiàn)經(jīng)過(guò)點(diǎn)且與曲線(xiàn)相交于兩點(diǎn),設(shè)線(xiàn)段的中點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且在區(qū)間上的最大值比最小值大.
(1)求的值;
(2)若函數(shù)在區(qū)間的最小值是,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)中僅有一人申請(qǐng)了北京大學(xué)的自主招生考試,當(dāng)他們被問(wèn)到誰(shuí)申請(qǐng)了北京大學(xué)的自主招生考試時(shí),甲說(shuō):“丙或丁申請(qǐng)了”;乙說(shuō):“丙申請(qǐng)了”;丙說(shuō):“甲和丁都沒(méi)有申請(qǐng)”;丁說(shuō):“乙申請(qǐng)了”,如果這四位同學(xué)中只有兩人說(shuō)的是對(duì)的,那么申請(qǐng)了北京大學(xué)的自主招生考試的同學(xué)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,若橢圓上一點(diǎn)滿(mǎn)足,過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作軸的垂線(xiàn),交橢圓于,求證:存在實(shí)數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級(jí)階梯式水價(jià)計(jì)量辦法,具體如下:第一階梯,每戶(hù)居民月用水量不超過(guò)12噸,價(jià)格為4元/噸;第二階梯,每戶(hù)居民月用水量超過(guò)12噸,超過(guò)部分的價(jià)格為8元/噸.為了了解全市居民月用水量的分布情況,通過(guò)抽樣獲得了100戶(hù)居民的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成8組,制成了如圖1所示的頻率分布直方圖.
(圖1) (圖2)
(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;
(Ⅱ)通過(guò)頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));
(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線(xiàn)性回歸方程是. 若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com