(本小題滿分12分)

已知集合A={a2a+1,-3},B={a-3,a2+1,2a-1},若AB={-3},

(Ⅰ)求實數(shù)a的值.

(Ⅱ)設,求不等式的解集。

 

【答案】

(1)a=-1.(2)(-3,1)∪(3,+∞)

【解析】

試題分析:(Ⅰ) ∵AB={-3},∴-3∈B,

∴當a-3=-3,即a=0時,AB={-3,1},與題設條件AB={-3}矛盾,舍去;

當2a-1=-3,即a=-1時,A={1,0,-3},B={-4,2,-3},

滿足AB={-3},綜上可知a=-1.………………………………6分

(Ⅱ)∵f(1)=3,∴當x≥0時,由f(x)>f(1)得x2-4x+6>3,

x>3或x<1.又x≥0,∴x∈[0,1)∪(3,+∞).

x<0時,由f(x)>3得x+6>3∴x>-3,

x∈(-3,0).

∴所求不等式的解集為: (-3,1)∪(3,+∞) ……………………12分

考點:本試題考查了集合的交集,一元二次不等式的求解。

點評:解決該試題的關(guān)鍵是要利用集合運算的特性:互異性來確定參數(shù)a的值。從-3是公共的元素入手來分析,而對于分段函數(shù)的不等式的求解,需要對x進行分類討論得到。屬于中檔題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案