如圖,PC是圓O的切線,切點為C,直線PA與圓O交于A、B兩點,∠APC的平分線分別交弦CA,CB于D,E兩點,已知PC=3,PB=2,則
PE
PD
的值為
 
考點:與圓有關的比例線段
專題:直線與圓
分析:由已知條件推導出△PCB∽△PAC,△PCE∽△PAD,由此能求出
PE
PD
=
PC
PA
=
2
3
解答: 解:作直線CF,連結(jié)BF,∴CF⊥PC,
∴∠PCB+∠BCF=90°,
∵CF是直徑,∴∠BCF+∠F=90°,
∴∠PCB=∠F,∵∠F=∠A,∴∠PCB=∠A,
∴△PCB∽△PAC,
PC
PA
=
PB
PC
=
2
3
,
∵∠PCE=∠PCB=∠A,∠CPE=∠APD,
∴△PCE∽△PAD,
PE
PD
=
PC
PA
=
2
3

故答案為:
2
3
點評:本題考查與圓有關的線段比值的求法,是中檔題,解題時要認真審題,注意圓的性質(zhì)的靈活運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x2
2
-2ax+3lnx.(0<a<3)
(1)當a=2時,求函數(shù)f(x)=
x2
2
-2ax+3lnx的單調(diào)區(qū)間.
(2)當x∈[1,+∞)時,若f(x)≥-5xlnx+3lnx-
3
2
恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:程序框圖中,若輸入n=6,m=4,那么輸出的p=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x、y滿足約束條件
2x-y+2≥0
x≥0
y≥0
,若目標函數(shù)z=Rx+y(R<0)取最大值的最優(yōu)解只能是﹙0,2﹚,則R的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
x+3y-3≥0
5x-3y-5≤0
x-y+1≥0
,則z=x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,若輸入的n=10,則輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=cos2(x-
π
12
)+sin2(x+
π
12
)-1
,下列選項中正確的是( 。
A、f(x)在(
π
4
,
π
2
)
內(nèi)是遞增的
B、f(x)的圖象關于原點對稱
C、f(x)的最小正周期為2π
D、f(x)的最大值為1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于空間的兩條直線m、n和一個平面α,下列命題中的真命題是(  )
A、若m∥α,n∥α,則m∥n
B、若m∥α,n?α,則m∥n
C、若m∥α,n⊥α,則m∥n
D、若m⊥α,n⊥α,則m∥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex(其中e為自然對數(shù)的底數(shù)),g(x)=
n
2
x+m(m,n∈R)且7<e2
15
2

(1)若T(x)=f(x)g(x),m=1-
n
2
,求T(x)在[0,1]上最大值;
(2)若n=4時,方程f(x)=g(x)在[0,2]上恰有兩個相等實根,求m的范圍;
(3)若m=-
15
2
,n∈N*
,求使f(x)圖象恒在g(x)圖象上方的最大正整數(shù)n.

查看答案和解析>>

同步練習冊答案