已知f1(x)=sinx,f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N*,則f2012(x)=( 。
分析:由(sinx)(4)=sinx,得fn+4(x)=fn(x),進而可求出答案.
解答:解:∵(sinx)′=cosx,(cosx)′=-sinx,(-sinx)′=-cosx,(-cosx)′=sinx,∴fn+4(x)=fn(x),n∈N*,∴f2012(x)=f4(x)=-cosx.
故選D.
點評:本題考查了三角函數(shù)的導數(shù),理解三角函數(shù)的導函數(shù)具有周期性是解決此問題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f1(x)=sinx+cosx,記f2(x)=f′1(x),f3(x)=f′2(x),…,fn(x)=f′n-1(x),( n∈N*,n≥2).則f1
π
4
)+f2
π
4
)+…+f2010
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f1(x)=sinx+cosx,記f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*且n≥2),則f1(
π
2
)+f2(
π
2
)+…+f2013(
π
2
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的導函數(shù),即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N+,則f2013(x)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f1(x)=sinx-cosx,fn+1(x)是fn(x)的導函數(shù),即f2(x)=f1(x),f3(x)=f2(x),…,fn+1(x)=fn(x),n∈N*,則f2012(x)=( 。

查看答案和解析>>

同步練習冊答案